Geometric configurations in the ring of integers modulo p^{ell}

Type: Article

Publication Date: 2012-01-01

Citations: 18

DOI: https://doi.org/10.1512/iumj.2012.61.4751

Abstract

We study variants of the Erdős distance problem and the dot products problem in the setting of the integers modulo q, where q = p ℓ is a power of an odd prime.

Locations

  • Indiana University Mathematics Journal - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Geometric configurations in the ring of integers modulo $p^{\ell}$ 2011 David Covert
Alex Iosevich
Jonathan Pakianathan
+ Geometric configurations in the ring of integers modulo $p^{\ell}$ 2011 David S. Covert
Alex Iosevich
Jonathan Pakianathan
+ Erdős Type Problems in Modules over Cyclic Rings 2014 Esen Aksoy Yazici
+ PDF Chat On the Number of Dot Product Chains in Finite Fields and Rings 2022 Vincent Blevins
David L. Crosby
Ethan Lynch
Steven Senger
+ Erd\H{o}s Type Problems in Modules over Cyclic Rings 2014 Esen Aksoy Yazici
+ PDF Chat Erdős Type Problems in Modules over Cyclic Rings 2015 Esen Aksoy Yazici
+ Results on the Erdős–Falconer distance problem in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msubsup><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mi>q</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msubsup></mml:math> for odd q 2015 David Covert
+ On the Pinned Distances Problem over Finite Fields 2020 Thomas Brendan Murphy
Giorgis Petridis
Thang Pham
Misha Rudnev
Sophie Stevens
+ The Titchmarsh problem with integers having a given number of prime divisors 1996 N. M. Timofeev
M. B. Khripunova
+ Combinational properties of sets of residues modulo a prime and the Erdős—Graham problem 2006 A. A. Glibichuk
+ Results on the Erd\H os-Falconer distance problem in $\mathbb{Z}_q^d$ for odd $q$ 2013 David Covert
+ The Collatz Problem over 2-adic Integers 2003 敏夫 浦田
+ On the Erdős–Szekeres problem in combinatorial geometry 2007 V. A. Koshelev
+ The Erdos distance problem 2011
+ PDF Chat Finite Point Configurations in the Plane, Rigidity and Erdős Problems 2018 Alex Iosevich
Jonathan Passant
+ Erdős–Birch type question in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi mathvariant="double-struck">N</mml:mi></mml:mrow><mml:mrow><mml:mi>r</mml:mi></mml:mrow></mml:msup></mml:math> 2017 Yong-Gao Chen
Jin-Hui Fang
Norbert Hegyvári
+ Erdős-Hajnal Problems for Posets 2025 C. L. Winter
+ PDF Chat Geometric combinatorics in discrete settings 2011 David Covert
+ PDF Chat On the minimal overlap problem of Erdös 1959 Leo Moser
+ Families of modular arithmetic progressions with an interval of distance multiplicities 2022 Peter J Dukes
Tao Gaede