Elliptic special Weingarten surfaces of minimal type in $\mathbb{R}^3$ of finite total curvature

Type: Preprint

Publication Date: 2019-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.1907.09122

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat COMPLETE STATIONARY SURFACES IN ${\mathbb R}^4_1$ WITH TOTAL GAUSSIAN CURVATURE – ∫ K<font>d</font>M = 4π 2013 Xiang Ma
Peng Wang
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ Rotational symmetry of Weingarten spheres in homogeneous three-manifolds 2018 José A. Gálvez
Pablo Mira
+ PDF Chat Complete embedded minimal surfaces of finite total curvature 1985 David Hoffman
William H. Meeks
+ Complete embedded minimal surfaces of finite total curvature 1995 David Hoffman
Hermann Karcher
+ Review of "Classification of rotational special Weingarten surfaces of minimal type in S²xR and H²xR" 2013 Wendy Goemans
+ Constructing mean curvature 1 surfaces in $H^3$ with irregular ends 2008 Wayne Rossman
Masaaki Umehara
Kotaro Yamada
+ Rotational linear Weingarten surfaces of hyperbolic type 2006 Rafael López
+ Channel linear Weingarten surfaces 2015 Udo Hertrich-Jeromin
Klara Mundilova
Ekkehard-Heinrich Tjaden
+ PDF Chat Channel Linear Weingarten Surfaces 2015 Udo Hertrich-Jeromin
Klara Mundilova
Ekkehard-Heinrich Tjaden
+ PDF Chat Ribaucour transformations for constant mean curvature and linear Weingarten surfaces 2003 Armando M. V. Corro
Walterson Ferreira
Keti Tenenblat
+ A family of higher genus complete minimal surfaces that includes the Costa-Hoffman-Meeks one 2023 Irene I. Onnis
Bárbara Corominas Valério
José Antonio M. Vilhena
+ PDF Chat Compact embedded surfaces with constant mean curvature in $\Bbb{S}^2\times\Bbb{R}$ 2020 José M. Manzano
Francisco Torralbo
+ On the characterization of minimal surfaces with finite total curvature in $\mathbb H^2\times\mathbb R$ and $\widetilde{\rm PSL}_2(\mathbb{R},\tau)$ 2016 Laurent Hauswirth
Ana Menezes
M. Magdalena Rodríguez
+ Classification of rotational special Weingarten surfaces of minimal type in S^2 x R and H^2 x R 2010 Filippo Morabito
M. Magdalena Rodríguez
+ On the characterization of minimal surfaces with finite total curvature in $\mathbb H^2\times\mathbb R$ and $\widetilde{\rm PSL}_2(\mathbb{R},τ)$ 2016 Laurent Hauswirth
Ana Menezes
M. Magdalena Rodríguez
+ Elliptic Weingarten Hypersurfaces of Riemannian Products 2021 Ronaldo F. de Lima
Álvaro Ramos
João Paulo dos Santos
+ PDF Chat Entire solutions of the Allen-Cahn equation and complete embedded minimal surfaces of finite total curvature in $\mathbb{R}^3$ 2013 Manuel del Pino
Michał Kowalczyk
Juncheng Wei
+ Classification of rotational special Weingarten surfaces of minimal type in $${\mathbb{S}^2 \times \mathbb{R}}$$ and $${\mathbb{H}^2 \times \mathbb{R}}$$ 2012 Filippo Morabito
M. Magdalena Rodríguez
+ SUPERFÍCIES MÍNIMAS EM R3 2013 FELIPE DE ALBUQUERQUE MELLO PEREIRA