NEW BOUNDS FOR SZEMERÉDI'S THEOREM, III: A POLYLOGARITHMIC BOUND FOR

Type: Article

Publication Date: 2017-01-01

Citations: 15

DOI: https://doi.org/10.1112/s0025579317000316

Abstract

Define to be the largest cardinality of a set that does not contain four elements in arithmetic progression. In 1998, Gowers proved that for some absolute constant . In 2005, the authors improved this to In this paper we further improve this to which appears to be the limit of our methods.

Locations

Similar Works

Action Title Year Authors
+ New bounds for Szemerédi's theorem, III: A polylogarithmic bound for $r_4(N)$ 2017 Ben Green
Terence Tao
+ New bounds for Szemeredi's theorem, II: A new bound for $r_4(N)$ 2006 Ben Green
Terence Tao
+ PDF Chat ON A GENERALIZATION OF SZEMERÉDI'S THEOREM 2006 Ilya D. Shkredov
+ A New Proof of Szemer�di's Theorem for Arithmetic Progressions of Length Four 1998 W. T. Gowers
+ On a Generalization of Szemeredi's Theorem 2005 Ilya D. Shkredov
+ New bounds in Balog-Szemerédi-Gowers theorem 2014 Tomasz Schoen
+ Better bound for the Erdős-Szekeres number 2021 Imre Bárány
+ A Constructive Lower Bound on Szemerédi's Theorem 2017 Vladislav Taranchuk
+ A generalization of sets without long arithmetic progressions based on Szekeres algorithm 2013 Xiaodong Xu
+ PDF Chat Finite analogs of Szemerédi’s theorem 2010 Paul Raff
Doron Zeilberger
+ Finite Analogs of Szemerédi's Theorem 2009 Paul Raff
Doron Zeilberger
+ On a two-dimensional analogue of Szemerédi's theorem in Abelian groups 2009 Ilya D. Shkredov
+ PDF Approximate arithmetic structure in large sets of integers 2021 Jonathan M. Fraser
Han Yu
+ Bourgain-Chang's proof of the weak Erdős-Szemerédi conjecture 2017 Dmitrii Zhelezov
+ PDF Logarithmic bounds for Roth's theorem via almost-periodicity 2019 Thomas F. Bloom
Olof Sisask
+ Szemerédi's theorem and problems on arithmetic progressions 2006 Ilya D. Shkredov
+ PDF Contributions to the Erdös-Szemerédi theory of sieved integers 1980 Mangala J Narlikar
K. Ramachandra
+ New bounds for Szemeredi's theorem, Ia: Progressions of length 4 in finite field geometries revisited 2012 Ben Green
Terence Tao
+ More on the Erdös-Ko-Rado theorem for integer sequences 1983 Hans-Dietrich O. F. Gronau
+ PDF Chat Yet Another Proof Of Szemerédi's Theorem 2010 Ben Green
Terence Tao