The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled Chi-square

Type: Article

Publication Date: 2019-01-23

Citations: 83

DOI: https://doi.org/10.1007/s00440-018-00896-9

Locations

  • Probability Theory and Related Fields - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square 2017 Pragya Sur
Yuxin Chen
Emmanuel J. Candès
+ The Likelihood Ratio Test in High-Dimensional Logistic Regression Is Asymptotically a Rescaled Chi-Square 2017 Pragya Sur
Yuxin Chen
Emmanuel J. Candès
+ A modern maximum-likelihood theory for high-dimensional logistic regression 2018 Pragya Sur
Emmanuel J. Candès
+ PDF Chat A modern maximum-likelihood theory for high-dimensional logistic regression 2019 Pragya Sur
Emmanuel J. Candès
+ PDF Chat A Large Scale Analysis of Logistic Regression: Asymptotic Performance and New Insights 2019 Xiaoyi Mai
Zhenyu Liao
Romain Couillet
+ Likelihood Ratio Test in Multivariate Linear Regression: from Low to High Dimension 2018 Yinqiu He
Tiefeng Jiang
Jiyang Wen
Gongjun Xu
+ PDF Chat Likelihood Ratio Test in Multivariate Linear Regression: from Low to High Dimension 2019 Yinqiu He
Tiefeng Jiang
Jiyang Wen
Gongjun Xu
+ Diaconis-Ylvisaker prior penalized likelihood for $p/n \to κ\in (0,1)$ logistic regression 2023 Philipp Sterzinger
Ioannis Kosmidis
+ The Asymptotic Distribution of the MLE in High-dimensional Logistic Models: Arbitrary Covariance 2020 Qian Zhao
Pragya Sur
Emmanuel J. Candès
+ PDF Chat The asymptotic distribution of the MLE in high-dimensional logistic models: Arbitrary covariance 2022 Qian Zhao
Pragya Sur
Emmanuel J. Candès
+ PSEUDO-R 2 IN LOGISTIC REGRESSION MODEL 2006 Bo Hu
Jun Shao
Mari Palta
+ Logistic Regression 2006
+ Logistic Regression 2022 Daniel Zelterman
+ On the correspondence of deviances and maximum-likelihood and interval estimates from log-linear to logistic regression modelling 2020 Wei Jing
Michail Papathomas
+ PDF Chat Inferential tools in penalized logistic regression for small and sparse data: A comparative study 2016 Marianna Siino
Salvatore Fasola
Vito M. R. Muggeo
+ An applied analysis of high-dimensional logistic regression 2017 Derek Qiu
+ The Logistic Regression 2024 Jenny K. Chen
+ Feasible Adjustments of Statistical Inference in High-Dimensional Generalized Linear Models 2023 Kazuma Sawaya
Yoshimasa Uematsu
Masaaki Imaizumi
+ Log-Likelihood-Based Pseudo-R[superscript 2] in Logistic Regression: Deriving Sample-Sensitive Benchmarks. 2018 Giselmar A. J. Hemmert
Laura Marie Edinger‐Schons
Jan Wieseke
Heiko Schimmelpfennig
+ Rejoinder to “Assessing the goodness of fit of logistic regression models in large samples: A modification of the Hosmer‐Lemeshow test” 2020 Giovanni Nattino
Michael L. Pennell
Stanley Lemeshow