Learning Compact Geometric Features

Type: Article

Publication Date: 2017-10-01

Citations: 205

DOI: https://doi.org/10.1109/iccv.2017.26

Download PDF

Abstract

We present an approach to learning features that represent the local geometry around a point in an unstructured point cloud. Such features play a central role in geometric registration, which supports diverse applications in robotics and 3D vision. Current state-of-the-art local features for unstructured point clouds have been manually crafted and none combines the desirable properties of precision, compactness, and robustness. We show that features with these properties can be learned from data, by optimizing deep networks that map high-dimensional histograms into low-dimensional Euclidean spaces. The presented approach yields a family of features, parameterized by dimension, that are both more compact and more accurate than existing descriptors.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Learning Compact Geometric Features 2017 Marc Khoury
Qian-Yi Zhou
Vladlen Koltun
+ PDF Chat Learning general and distinctive 3D local deep descriptors for point cloud registration 2022 Fabio Poiesi
Davide Boscaini
+ PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ UPDesc: Unsupervised Point Descriptor Learning for Robust Registration. 2021 Lei Li
Hongbo Fu
Maks Ovsjanikov
+ PDF Chat PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ PPFNet: Global Context Aware Local Features for Robust 3D Point Matching 2018 Haowen Deng
Tolga Birdal
Slobodan Ilić
+ Distinctive 3D local deep descriptors 2020 Fabio Poiesi
Davide Boscaini
+ PDF Chat Deep Positional and Relational Feature Learning for Rotation-Invariant Point Cloud Analysis 2020 Ruixuan Yu
Xin Wei
Federico Tombari
Jian Sun
+ Lepard: Learning partial point cloud matching in rigid and deformable scenes 2021 Yang Li
Tatsuya Harada
+ Distinctive 3D local deep descriptors 2020 Fabio Poiesi
Davide Boscaini
+ PDF Chat Lepard: Learning partial point cloud matching in rigid and deformable scenes 2022 Yang Li
Tatsuya Harada
+ PDF Chat Distinctive 3D local deep descriptors 2021 Fabio Poiesi
Davide Boscaini
+ RIGA: Rotation-Invariant and Globally-Aware Descriptors for Point Cloud Registration 2022 Hao Yu
Ji Hou
Zheng Qin
Mahdi Saleh
Ivan Shugurov
Kai Wang
Benjamin Busam
Slobodan Ilić
+ PDF Chat WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration 2022 Lei Li
Hongbo Fu
Maks Ovsjanikov
+ Generalisable and distinctive 3D local deep descriptors for point cloud registration. 2021 Fabio Poiesi
Davide Boscaini
+ PDF Chat Graphite: Graph-Induced Feature Extraction for Point Cloud Registration 2020 Mahdi Saleh
Shervin Dehghani
Benjamin Busam
Nassir Navab
Federico Tombari
+ PDF Chat Self-Supervised Learning of Point Clouds via Orientation Estimation 2020 Omid Poursaeed
Tianxing Jiang
Han Qiao
Nayun Xu
Vladimir G. Kim
+ Self-supervised Learning of Point Clouds via Orientation Estimation 2020 Omid Poursaeed
Tianxing Jiang
Han Qiao
Nayun Xu
Vladimir G. Kim
+ Self-supervised Learning of Point Clouds via Orientation Estimation 2020 Omid Poursaeed
Tianxing Jiang
Han Qiao
Nayun Xu
Vladimir G. Kim
+ PDF Chat Robust Kernel-Based Feature Representation for 3d Point Cloud Analysis Via Circular Convolutional Network 2022 Seunghwan Jung
Yeong-Gil Shin
Minyoung Chung