Cubes of integral vectors in dimension four

Type: Article

Publication Date: 2012-11-17

Citations: 1

DOI: https://doi.org/10.1556/sscmath.49.2012.4.1225

Abstract

A system of m nonzero vectors in ℤ n is called an m -icube if they are pairwise orthogonal and have the same length. The paper describes m -icubes in ℤ 4 for 2 ≦ m ≦ 4 using Hurwitz integral quaternions, counts the number of them with given edge length, and proves that unlimited extension is possible in ℤ 4 .

Locations

  • Studia Scientiarum Mathematicarum Hungarica - View
  • ELTE Digital Institutional Repository (EDIT) (Eötvös Loránd University) - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Cubes of integral vectors in dimension four 2011 Emil W. Kiss
Péter Kutas
+ Cubes of integral vectors in dimension four 2011 Emil W. Kiss
Péter Kutas
+ Sums of squares and orthogonal integral vectors 2008 Lee M. Goswick
Emil W. Kiss
Gábor Moussong
Nándor Simányi
+ Sums of squares and orthogonal integral vectors 2008 Lee M. Goswick
Emil W. Kiss
Gábor Moussong
Nándor Simányi
+ PDF Chat Sums of squares and orthogonal integral vectors 2011 Lee M. Goswick
Emil W. Kiss
Gábor Moussong
Nándor Simányi
+ Extendable orthogonal sets of integral vectors 2022 Fernando Chamizo
Jorge Jiménez Urroz
+ Hurwitz’s Lectures on the Number Theory of Quaternions 2023 Nicola Oswald
Jörn Steuding
+ Construction $\pi_{A}$ Lattices Extended to Hurwitz Quaternion Integers 2024 Juliana G. F. Souza
Sueli I. R. Costa
Cong Ling
+ PDF Chat Book review: “Hurwitz’s Lectures on the Number Theory of Quaternions” by Nicola Oswald and Jörn Steuding 2024 John Voight
+ PDF Chat Extendable orthogonal sets of integral vectors 2022 Fernando Chamizo
Jorge Jiménez Urroz
+ Quaternion Extensions of Order 16 2005 Ivo M. Michailov
+ Constructing integer angles 1982 Desmond MacHale
+ Cubic sublattices 2022 Márton Horváth
+ The Hurwitz Integral Quaternions 2003 John H. Conway
D. A. Smith
+ Quaternionen und orthogonale Gruppen 2004 Theodor Bröcker
+ Waring's Problem for Hurwitz Quaternion Integers. 2019 Janyarak Tongsomporn
Nicola Oswald
Jörn Steuding
+ Magic cubes 1998 Marián Trenkler
+ Factorization of Hurwitz Quaternions 2012 Boyd Coan
Cherng-tiao Perng
+ Chapter 8. Quaternion Factors 1999 J. B. Kuipers
+ An analysis of different representations for vectors and planes in ℝ 3 $\mathbb {R}^{3}$ 2016 Ivonne Sandoval
Edgar Possani

Works That Cite This (1)

Action Title Year Authors
+ Ehrhart polynomial for lattice squares, cubes and hypercubes 2015 Eugen J. Ionaşcu