Universality of local spectral statistics of random matrices

Type: Article

Publication Date: 2012-01-30

Citations: 133

DOI: https://doi.org/10.1090/s0273-0979-2012-01372-1

Abstract

The Wigner-Dyson-Gaudin-Mehta conjecture asserts that the local eigenvalue statistics of large random matrices exhibit universal behavior depending only on the symmetry class of the matrix ensemble. For invariant matrix models, the eigenvalue distributions are given by a log-gas with potential<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"><mml:semantics><mml:mi>V</mml:mi><mml:annotation encoding="application/x-tex">V</mml:annotation></mml:semantics></mml:math></inline-formula>and inverse temperature<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta equals 1 comma 2 comma 4"><mml:semantics><mml:mrow><mml:mi>β<!-- β --></mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>4</mml:mn></mml:mrow><mml:annotation encoding="application/x-tex">\beta = 1, 2, 4</mml:annotation></mml:semantics></mml:math></inline-formula>, corresponding to the orthogonal, unitary and symplectic ensembles. For<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta not-an-element-of StartSet 1 comma 2 comma 4 EndSet"><mml:semantics><mml:mrow><mml:mi>β<!-- β --></mml:mi><mml:mo>∉<!-- ∉ --></mml:mo><mml:mo fence="false" stretchy="false">{</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>4</mml:mn><mml:mo fence="false" stretchy="false">}</mml:mo></mml:mrow><mml:annotation encoding="application/x-tex">\beta \notin \{1, 2, 4\}</mml:annotation></mml:semantics></mml:math></inline-formula>, there is no natural random matrix ensemble behind this model, but the statistical physics interpretation of the log-gas is still valid for all<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta greater-than 0"><mml:semantics><mml:mrow><mml:mi>β<!-- β --></mml:mi><mml:mo>&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow><mml:annotation encoding="application/x-tex">\beta &gt; 0</mml:annotation></mml:semantics></mml:math></inline-formula>. The universality conjecture for invariant ensembles asserts that the local eigenvalue statistics are independent of<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper V"><mml:semantics><mml:mi>V</mml:mi><mml:annotation encoding="application/x-tex">V</mml:annotation></mml:semantics></mml:math></inline-formula>. In this article, we review our recent solution to the universality conjecture for both invariant and non-invariant ensembles. We will also demonstrate that the local ergodicity of the Dyson Brownian motion is the intrinsic mechanism behind the universality. Furthermore, we review the solution of Dyson’s conjecture on the local relaxation time of the Dyson Brownian motion. Related questions such as delocalization of eigenvectors and local version of Wigner’s semicircle law will also be discussed.

Locations

  • arXiv (Cornell University) - View - PDF
  • Bulletin of the American Mathematical Society - View - PDF

Similar Works

Action Title Year Authors
+ Universality of local spectral statistics of random matrices 2011 László Erdős
Horng‐Tzer Yau
+ Universality of local spectral statistics of random matrices 2011 László Erdős
Horng‐Tzer Yau
+ Universality for random matrices and log-gases 2012 László Erdős
+ PDF Chat Universality of Wigner random matrices: a survey of recent results 2011 László Erdős
+ Universality for random matrices and log-gases 2012 László Erdős
+ PDF Chat Universality for random matrices and log-gases 2012 László Erdős
+ Local and global universality of random matrix cokernels 2024 Hoi H. Nguyen
Melanie Matchett Wood
+ Random matrices: Universality of local spectral statistics of non-Hermitian matrices 2015 Terence Tao
Van Vu
+ PDF Chat UNIVERSALITY OF WIGNER RANDOM MATRICES 2010 László Erdős
+ Local laws for non-Hermitian random matrices 2017 Friedrich Götze
Alexey Naumov
А. Н. Тихомиров
+ Local spectral universality for random matrices with independent entries 2015 Torben Krüger
+ Local law and mesoscopic linear statistics of random matrices 2018 Yukun He
+ PDF Chat Local Eigenvalue Density for General MANOVA Matrices 2013 László Erdős
Brendan Farrell
+ Random matrices: Universality of local eigenvalue statistics 2009 Terence Tao
Van Vu
+ PDF Chat Random matrices: Universality of local eigenvalue statistics 2011 Terence Tao
Van Vu
+ PDF Chat Universality of local spectral statistics of products of random matrices 2020 Gernot Akemann
Z. Burda
Mario Kieburg
+ PDF Chat Universality for general Wigner-type matrices 2016 Oskari Ajanki
László Erdős
Torben Krüger
+ Local laws of random matrices and their applications 2019 Fan Yang
+ Universality for general Wigner-type matrices 2015 Oskari Ajanki
László Erdős
Torben Krüger
+ Universality for general Wigner-type matrices 2015 Oskari Ajanki
László Erdős
Torben Krüger