Quantum Unique Ergodicity of Degenerate Eisenstein Series on GL(n)

Type: Article

Publication Date: 2019-05-14

Citations: 3

DOI: https://doi.org/10.1007/s00220-019-03464-x

Locations

  • Communications in Mathematical Physics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Quantum unique ergodicity of degenerate eisenstein series on gl(n) 2016 Liyang Zhang
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ Quantum ergodicity for shrinking balls in arithmetic hyperbolic manifolds 2020 Dimitrios Chatzakos
Robin Frot
Nicole Raulf
+ PDF Chat Subconvexity Implies Effective Quantum Unique Ergodicity for Hecke-Maa{\ss} Cusp Forms on $\mathrm{SL}_2(\mathbb{Z}) \backslash \mathrm{SL}_2(\mathbb{R})$ 2024 Ankit Bisain
Peter Humphries
Andrei Mandelshtam
Noah Walsh
Xun Wang
+ PDF Chat Quantum unique ergodicity of Eisenstein series on the Hilbert modular group over a totally real field 2010 Jimi Lee Truelsen
+ Quantum Unique Ergodicity and Number Theory 2011 K. Soundararajan
+ PDF Chat Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 2021 Jiakun Pan
Matthew P. Young
+ PDF Chat Graph eigenfunctions and quantum unique ergodicity 2010 Shimon Brooks
Elon Lindenstrauss
+ Quantum Unique Ergodicity for Eisenstein Series in the Level Aspect 2019 Jiakun Pan
Matthew P. Young
+ Quantum Unique Ergodicity for Eisenstein Series on the Hilbert Modular Group over a Totally Real Field 2007 Jimi L. Truelsen
+ Quantum unique ergodicity for SL₂(ℤ)\ℍ 2010 K. Soundararajan
+ Quantum unique ergodicity for SL_2(Z)\H 2009 K. Soundararajan
+ A Note on Holomorphic Quantum Unique Ergodicity 2021 Krishnarjun Krishnamoorthy
+ Quantum Unique Ergodicity for Eisenstein Series over Function Fields in the Level Aspect 2023 Ikuya Kaneko
Shin-ya Koyama
+ Subconvexity implies effective quantum unique ergodicity for Hecke–Maaß cusp forms on SL2(ℤ)∖SL2(ℝ) 2024 Ankit Bisain
Peter Humphries
Andrei Mandelshtam
Noah Walsh
Xun Wang
+ Zeros of Modular Forms in Thin Sets and Effective Quantum Unique Ergodicity 2015 Stephen Lester
Kaisa Matomäki
Maksym Radziwiłł
+ The Quantum Unique Ergodicity and the L4-norm Problems for Newform Eisenstein Series 2020 Jiakun Pan
+ PDF Chat Quantum unique ergodicity and the number of nodal domains of eigenfunctions 2017 Seung uk Jang
Junehyuk Jung
+ Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity 2001 Peter Sarnak
+ Quantum ergodicity of Eisenstein functions at complex energies 2011 Semyon Dyatlov