The variation of the maximal function of a radial function

Type: Article

Publication Date: 2018-01-01

Citations: 56

DOI: https://doi.org/10.4310/arkiv.2018.v56.n1.a9

Abstract

It is shown for the non-centered Hardy–Littlewood maximal operator $M$ that ${\lVert DMf \rVert}_1 \: \leq C_n \: {\lVert Df \rVert}_1$ for all radial functions in $W^{1,1} (\mathbb{R}^n)$.

Locations

  • Arkiv för matematik - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The variation of the maximal function of a radial function 2017 Hannes Luiro
+ The variation of the maximal function of a radial function 2017 Hannes Luiro
+ The Variation of the Fractional Maximal Function of a Radial Function 2017 Hannes Luiro
José Madrid
+ The Variation of the Fractional Maximal Function of a Radial Function 2017 Hannes Luiro
José Madrid
+ PDF Chat The Variation of the Fractional Maximal Function of a Radial Function 2017 Hannes Luiro
José Madrid
+ On the variation of the Hardy-Littlewood maximal function 2015 Ondřej Kurka
+ PDF Chat Continuity of the gradient of the fractional maximal operator on $W^{1,1} (\mathbb{R}^d)$ 2023 David Beltran
Cristian González-Riquelme
José Madrid
Julian Weigt
+ Continuity of the gradient of the fractional maximal operator on $W^{1,1}(\mathbb{R}^d)$ 2021 David Beltran
Cristian González-Riquelme
José Madrid
Julian Weigt
+ PDF Chat Continuity of the maximal operator in Sobolev spaces 2006 Hannes Luiro
+ Regularity of the centered fractional maximal function on radial functions 2019 David Beltrán
José Madrid
+ Regularity of the centered fractional maximal function on radial functions 2019 David Beltran
José Madrid
+ PDF Chat Weak-type Estimates in Morrey Spaces for Maximal Commutator and Commutator of Maximal Function 2018 Müjdat Ağcayazı
Амиран Гогатишвили
Rza Mustafayev
+ The hardy-littlewood maximal function of a sobolev function 1997 Juha Kinnunen
+ Regularity of the centered fractional maximal function on radial functions 2020 David Beltran
José Madrid
+ PDF Chat Gradient bounds for radial maximal functions 2021 Emanuel Carneiro
Cristian González-Riquelme
+ PDF Chat A Note on Boundedness of the Hardy–Littlewood Maximal Operator on Morrey Spaces 2015 Амиран Гогатишвили
Rza Mustafayev
+ Spherical maximal operators on radial functions 1996 Andreas Seeger
Stephen Wainger
James Wright
+ Spherical maximal operators on radial functions 1996 Andreas Seeger
Stephen Wainger
James Wright
+ PDF Chat An Estimate for the Kakeya Maximal Operator on Functions of Square Radial Type 1999 Hitoshi Tanaka
+ The Hardy–Littlewood maximal function 2014 Omar El-Fallah
Karim Kellay
Javad Mashreghi
Thomas Ransford