Uncoupled isotonic regression via minimum Wasserstein deconvolution

Type: Article

Publication Date: 2019-03-27

Citations: 55

DOI: https://doi.org/10.1093/imaiai/iaz006

Abstract

Abstract Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown non-decreasing regression function $f$ from independent pairs $(x_i, y_i)$ where ${\mathbb{E}}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart, where one is given only the unordered sets $\{x_1, \ldots , x_n\}$ and $\{y_1, \ldots , y_n\}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.

Locations

  • Information and Inference A Journal of the IMA - View
  • arXiv (Cornell University) - View - PDF
  • DSpace@MIT (Massachusetts Institute of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ Uncoupled isotonic regression via minimum Wasserstein deconvolution 2018 Philippe Rigollet
Jonathan Weed
+ Uncoupled isotonic regression via minimum Wasserstein deconvolution 2018 Philippe Rigollet
Jonathan Weed
+ Robust Estimation under the Wasserstein Distance 2023 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis 2021 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ Entropic optimal transport is maximum-likelihood deconvolution 2018 Philippe Rigollet
Jonathan Weed
+ Entropic optimal transport is maximum-likelihood deconvolution 2018 Philippe Rigollet
Jonathan Weed
+ Outlier-Robust Optimal Transport: Duality, Structure, and Statistical Analysis. 2021 Sloan Nietert
Rachel Cummings
Ziv Goldfeld
+ Near-optimal estimation of smooth transport maps with kernel sums-of-squares 2021 Boris Muzellec
Adrien Vacher
Francis Bach
François-Xavier Vialard
Alessandro Rudi
+ A dynamic programming approach for generalized nearly isotonic optimization 2020 Zhensheng Yu
Xuyu Chen
Xudong Li
+ PDF Chat Gaussian entropic optimal transport: Schr\"odinger bridges and the Sinkhorn algorithm 2025 Ömer Deniz Akyıldız
Pierre Del Moral
Joaquı́n Mı́guez
+ Minimax Rates for Wasserstein Deconvolution of Regular Distributions with Known Ordinary Smooth Errors 2025 Catia Scricciolo
+ Iterative Least Trimmed Squares for Mixed Linear Regression. 2019 Yanyao Shen
Sujay Sanghavi
+ PDF Chat Entropic optimal transport is maximum-likelihood deconvolution 2018 Philippe Rigollet
Jonathan Weed
+ Iterative Least Trimmed Squares for Mixed Linear Regression 2019 Yanyao Shen
Sujay Sanghavi
+ PDF Chat Linear Regression Without Correspondences via Concave Minimization 2020 Liangzu Peng
Manolis C. Tsakiris
+ A Convex Formulation for Mixed Regression: Near Optimal Rates in the Face of Noise. 2013 Yudong Chen
Xinyang Yi
Constantine Caramanis
+ Density deconvolution under a k-monotonicity constraint 2022 Chew-Seng Chee
Byungtae Seo
+ spedecon: Smoothness-Penalized Deconvolution for Density Estimation Under Measurement Error 2024 David Kent
+ PDF Chat Nonparametric mixture MLEs under Gaussian-smoothed optimal transport distance 2021 Han Fang
Zhen Miao
Yandi Shen
+ Nonparametric mixture MLEs under Gaussian-smoothed optimal transport distance 2021 Fang Han
Zhen Miao
Yandi Shen