Dimension rigidity of lattices in semisimple Lie groups

Type: Article

Publication Date: 2018-11-01

Citations: 2

DOI: https://doi.org/10.4171/ggd/481

Abstract

We prove that if \Gamma is a lattice in the group of isometries of a symmetric space of non-compact type without euclidean factors, then the virtual cohomological dimension of \Gamma equals its proper geometric dimension.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • Groups Geometry and Dynamics - View

Similar Works

Action Title Year Authors
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Dimension rigidity of lattices in semisimple Lie groups 2016 Cyril Lacoste
+ Geometric dimension of lattices in classical simple Lie groups 2015 Javier Aramayona
Dieter Degrijse
Conchita MartıĢnez-PĆ©rez
Juan Souto
+ Quasi-isometric classification of non-uniform lattices in semisimple groups of higher rank 2000 Cornelia Druţu
+ PDF Chat Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces 1998 Alex Eskin
+ Local rigidity of complex hyperbolic lattices in semisimple Lie groups 2015 Š˜Š½ŠŗŠ°Š½Š³ ŠšŠøŠ¼
Genkai Zhang
+ PDF Chat The quasi-isometry classification of lattices in semisimple Lie groups 1997 Benson Farb
+ LATTICES IN SEMISIMPLE LIE GROUPS 1970 M. S. Raghunathan
+ Lattices in Semisimple Lie Groups ā€” A Theorem of Wang 1972 M. S. Raghunathan
+ Sublinear Rigidity of Lattices in Semisimple Lie Groups 2023 Ido Grayevsky
+ Dimension preserving lattice isomorphisms of lie algebras 1980 David A. Towers
+ PDF Chat Geometric dimension of lattices in classical simple Lie groups 2017 Javier Aramayona
Dieter Degrijse
Conchita MartıĢnez-PĆ©rez
Juan Souto
+ L2-invariants of nonuniform lattices in semisimple Lie groups 2013 Holger Kammeyer
+ Twisted conjugacy and quasi-isometric rigidity of irreducible lattices in semisimple Lie groups 2018 T. Mubeena
Parameswaran Sankaran
+ PDF Chat Discrete subgroups of semisimple Lie groups, beyond lattices 2024 Fanny Kassel
+ A note on local rigidity 2017 Nicolas Bergeron
Tsachik Gelander
+ A note on local rigidity 2017 Nicolas Bergeron
Tsachik Gelander
+ PDF Chat <i>L</i><sup>2</sup>ā€“invariants of nonuniform lattices in semisimple Lie groups 2014 Holger Kammeyer
+ Stability and instability of lattices in semisimple groups 2023 Uri Bader
Alexander Lubotzky
Roman Sauer
Shmuel Weinberger
+ Rigidity problem for lattices in solvable Lie groups 1994 Alexander Starkov

Works Cited by This (0)

Action Title Year Authors