Property (T), finite-dimensional representations, and generic representations

Type: Article

Publication Date: 2018-08-07

Citations: 3

DOI: https://doi.org/10.1515/jgth-2018-0030

Abstract

Abstract Let G be a discrete group with Property (T). It is a standard fact that, in a unitary representation of G on a Hilbert space <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>ℋ</m:mi> </m:math> {\mathcal{H}} , almost invariant vectors are close to invariant vectors, in a quantitative way. We begin by showing that, if a unitary representation has some vector whose coefficient function is close to a coefficient function of some finite-dimensional unitary representation σ, then the vector is close to a sub-representation isomorphic to σ: this makes quantitative a result of P. S. Wang. We use that to give a new proof of a result by D. Kerr, H. Li and M. Pichot, that a group G with Property (T) and such that <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msup> <m:mi>C</m:mi> <m:mo>*</m:mo> </m:msup> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>G</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> {C^{*}(G)} is residually finite-dimensional, admits a unitary representation which is generic (i.e. the orbit of this representation in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>R</m:mi> <m:mo>⁢</m:mo> <m:mi>e</m:mi> <m:mo>⁢</m:mo> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>ℋ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> {Rep(G,\mathcal{H})} under the unitary group <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>U</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>ℋ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> {U(\mathcal{H})} is comeager). We also show that, under the same assumptions, the set of representations equivalent to a Koopman representation is comeager in <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>Rep</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>ℋ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:math> {\mathrm{Rep}(G,\mathcal{H})} .

Locations

  • Journal of Group Theory - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Property (T), finite-dimensional representations, and generic representations 2017 Michal Doucha
Maciej Malicki
Alain Valette
+ Property (T), finite-dimensional representations, and generic representations 2017 Michal Doucha
Maciej Malicki
Alain Valette
+ PDF Chat A Stone‐Weierstrass theorem for group representations 1978 Joe Repka
+ Kazhdan’s Property (T) 1984 Robert J. Zimmer
+ Typical operators admit common cyclic vectors 2013 Pavel Zorin‐Kranich
+ PDF Chat Weak Containment and Weak Frobenius Reciprocity 1976 Elliot C. Gootman
+ On Almost Representations of Property (T) Groups 2007 Vladimir Manuilov
Chao You
+ Kazhdan's Property (T) 2008 Bachir Bekka
Pierre de la Harpe
Alain Valette
+ PDF Chat Weak containment and weak Frobenius reciprocity 1976 Elliot C. Gootman
+ PDF Chat An Irreducible Unitary Representation of a Compact Group is Finite Dimensional 1957 Paul Koosis
+ PDF Chat Compact operators and algebraic <i>K</i>-theory for groups which act properly and isometrically on Hilbert space 2015 Guillermo Cortiñas⋆
Gisela Tartaglia
+ PDF Chat Representations of low copolarity 2022 André de Oliveira Gomes
Cláudio Gorodski
+ On almost representations of groups with property (T) 2008 Vladimir Manuilov
Chao You
+ Notes on $C_0$-representations and the Haagerup property 2014 Paul Jolissaint
+ G-Invariant Representations using Coorbits: Injectivity Properties 2023 Radu Bălan
Efstratios Tsoukanis
+ Representation theory of infinite-dimensional unitary groups 1993 Robert P. Boyer
+ PDF Chat The regular representations of measure groupoids 1978 Peter F. Hahn
+ PDF Chat Representation of Group Isomorphisms: The Compact Case 2015 Marita Ferrer
Margarita Gary
Salvador Hernández
+ PDF Chat The Structure of a Class of Representations of the Unitary Group on a Hilbert Space 1957 I. E. Segal
+ Geometric Property (T) and Kazhdan projections 2023 I. Vergara