Ramanujan’s theta functions and sums of triangular numbers

Type: Article

Publication Date: 2018-11-28

Citations: 10

DOI: https://doi.org/10.1142/s1793042119500520

Abstract

Let [Formula: see text] and [Formula: see text] be the set of integers and the set of positive integers, respectively. For [Formula: see text] let [Formula: see text] be the number of representations of [Formula: see text] by [Formula: see text], and let [Formula: see text] be the number of representations of [Formula: see text] by [Formula: see text] [Formula: see text]. In this paper, by using Ramanujan’s theta functions [Formula: see text] and [Formula: see text] we reveal some general relations between [Formula: see text] and [Formula: see text].

Locations

  • International Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Ramanujan’s theta function identities and the relations between sums of squares and sums of triangular numbers 2019 Min Bian
Shane Chern
Doris D. M. Sang
Ernest X. W. Xia
+ Ramanujan's theta functions and sums of triangular numbers 2016 Zhi-Hong Sun
+ The number of representations of n as a linear combination of triangular numbers 2019 Zhi-Hong Sun
+ Ramanujan's theta functions and linear combinations of three triangular numbers 2018 Zhi-Hong Sun
+ PDF Chat Proofs of some conjectures of Sun on the relations between sums of squares and sums of triangular numbers 2018 Ernest X. W. Xia
Zhang Yan
+ Ramanujan's theta functions and linear combinations of four triangular numbers 2018 Zhi-Hong Sun
+ Transformation formulas for the number of representations of \(n\) by linear combinations of four triangular numbers 2020 Z-H. Sun
+ Ternary quadratic forms and linear combination of three triangular numbers 2016 Zhi-Hong Sun
+ Trigonometric sums through Ramanujan’s theory of theta functions 2021 K. N. Harshitha
K. R. Vasuki
M. V. Yathirajsharma
+ Two Theta Function Identities of Ramanujan and Representation of a Number as a Sum of Three Squares and as a Sum of Three Triangular Numbers. 2012 Nayandeep Deka Baruah
Bidyut Boruah
+ An Identity of Ramanujan and the Representation of Integers as Sums of Triangular Numbers 2003 Zhiguo Liu
+ PDF Chat On sums of an even number of squares, and an even number of triangular numbers: an elementary approach based on Ramanujan’s ₁𝜓₁ summation formula 2001 S. Barry Cooper
+ A note for Ramanujan's circular summation formula 2015 Qiu-Ming Luo
+ PDF Chat Finite trigonometric sums arising from Ramanujan’s theta functions 2023 Bruce C. Berndt
Sun Kim
Alexandru Zaharescu
+ On the representation of integers as sums of triangular numbers 1995 Ken Ono
Sinai Robins
Patrick T. Wahl
+ The Explicit Formulae and Evaluations of Ramanujan's Remarkable Product of Theta-functions 2019 Devasirvatham John Prabhakaran
Kumar Ranjith Kumar
+ Development of Partition Functions of Ramanujan’s Works 2014 Sabuj Das
Haradhan Mohajan
+ Development of Partition Functions of Ramanujan’s Works 2014 Sabuj Das
Haradhan Mohajan
+ A new parameter for Ramanujan’s theta-functions and explicit values 2012 Nipen Saikia
+ Proofs of some conjectures of Sun on the relations between T(a,b,c,d;n) and N(a,b,c,d;n) 2022 Liping Cao
Bernard L. S. Lin

Works Cited by This (18)

Action Title Year Authors
+ Cooper and Lam's conjecture for generalized Bell ternary quadratic forms 2015 Werner Hürlimann
+ The Arithmetic Theory of Quadratic Forms 1950 Burton Jones
+ On two of Liouville's quaternary forms 1990 Günter Köhler
+ PDF Chat SUMS OF SQUARES AND SUMS OF TRIANGULAR NUMBERS INDUCED BY PARTITIONS OF 8 2008 Nayandeep Deka Baruah
S. Barry Cooper
Michael D. Hirschhorn
+ On the representation numbers of ternary quadratic forms and modular forms of weight 3/2 2014 Xuejun Guo
Yuzhen Peng
Hourong Qin
+ A GENERAL RELATION BETWEEN SUMS OF SQUARES AND SUMS OF TRIANGULAR NUMBERS 2005 Chandrashekar Adiga
S. Barry Cooper
Jung Hun Han
+ On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>c</… 2012 S. Barry Cooper
Heung Yeung Lam
+ PDF Chat Binary quadratic forms and sums of triangular numbers 2010 Zhi-Hong Sun
+ PDF Chat The relations between N(a,b,c,d;n) and t(a,b,c,d;n) and (p,k)-parametrization of theta functions 2017 Olivia X. M. Yao
+ PDF Chat Proofs of some conjectures of Sun on the relations between N(a,b,c,d;n) and t(a,b,c,d;n) 2018 Ernest X. W. Xia
Zhenghao Zhong