Spectral asymptotics for the semiclassical Dirichlet to Neumann operator

Type: Article

Publication Date: 2017-09-28

Citations: 14

DOI: https://doi.org/10.4171/jst/180

Abstract

Let M be a compact Riemannian manifold with smooth boundary, and let R(\lambda) be the Dirichlet–to–Neumann operator at frequency \lambda . The semiclassical Dirichlet–to–Neumann operator R_{\mathrm {scl}}(\lambda) is defined to be \lambda^{-1} R(\lambda) . We obtain a leading asymptotic for the spectral counting function for R_{\mathrm {scl}}(\lambda) in an interval [a_1, a_2) as \lambda \to \infty , under the assumption that the measure of periodic billiards on T^*M is zero. The asymptotic takes the form \mathrm N(\lambda; a_1,a_2) = ( \kappa(a_2)-\kappa(a_1))\mathrm {vol}'(\partial M) \lambda^{d-1}+o(\lambda^{d-1}), where \kappa(a) is given explicitly by \kappa(a) = \frac{\omega_{d-1}}{(2\pi)^{d-1}} \bigg( -\frac{1}{2\pi} \int_{-1}^1 (1 - \eta^2)^{(d-1)/2} \frac{a}{a^2 + \eta^2} \, d\eta - \frac{1}{4} + H(a) (1+a^2)^{(d-1)/2} \bigg) .

Locations

  • Journal of Spectral Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Spectral asymptotics for the semiclassical Dirichlet to Neumann operator 2015 Andrew Hassell
Victor Ivrii
+ Spectral Asymptotics for the Semiclassical Dirichlet to Neumann Operator 2019 Andrew Hassell
Victor Ivrii
+ Spectral asymptotics for Dirichlet to Neumann operator 2018 Victor Ivrii
+ PDF Chat Spectral cluster asymptotics of the Dirichlet to Neumann operator on the two-sphere 2024 Salvador Pérez‐Esteva
Alejandro Uribe
Carlos Villegas‐Blas
+ Asymptotics for the spectral heat function and bounds for integrals of Dirichlet eigenfunctions 1999 M. van den Berg
S. P. Watson
+ Improved asymptotics of the spectral gap for the Mathieu operator 2012 Berkay Anahtarcı
Plamen Djakov
+ Standard Local Semiclassical Spectral Asymptotics near the Boundary 2019 Victor Ivrii
+ Refined asymptotics of the spectral gap for the Mathieu operator 2012 Berkay Anahtarcı
Plamen Djakov
+ On the geometry of semiclassical limits on Dirichlet spaces 2017 Batu Güneysu
+ Semiclassical asymptotics for the twisted Neumann Laplacian with magnetic field 2011 Nicolas Raymond
+ On the geometry of semiclassical limits on Dirichlet spaces 2017 Batu Güneysu
+ Standard Local Semiclassical Spectral Asymptotics near the Boundary 1998 Victor Ivrii
+ Semiclassical asymptotics for a class of singular Schrödinger operators 2020 Rupert L. Frank
Simon Larson
+ PDF Chat Semiclassical asymptotics for a class of singular Schrödinger operators 2021 Rupert L. Frank
Simon Larson
+ Asymptotics of the spectrum of the Sturm-Liouville operator with regular boundary conditions 2008 A. S. Makin
+ Spectral asymptotics of the Dirichlet Laplacian on a generalized parabolic layer 2018 Pavel Exner
Vladimir Lotoreichik
+ Spectral Asymptotics for the $\overline{\partial }$-Neumann Problem 1982 Guy Métivier
+ Spectral asymptotics of the Dirichlet Laplacian on a generalized parabolic layer 2018 Pavel Exner
Vladimir Lotoreichik
+ Asymptotics for an infinite dimensional Riemann-Hilbert problem 2002 Spyridon Kamvissis
+ Standard Local Semiclassical Spectral Asymptotics near the Boundary. Miscellaneous 2019 Victor Ivrii