The distribution of polynomials over finite fields, with applications to the Gowers norms

Type: Article

Publication Date: 2009-12-10

Citations: 84

DOI: https://doi.org/10.11575/cdm.v4i2.62086

Locations

  • Contributions to Discrete Mathematics - View
  • Contributions to Discrete Mathematics - View

Similar Works

Action Title Year Authors
+ The distribution of polynomials over finite fields, with applications to the Gowers norms 2007 Ben Green
Terence Tao
+ Inverse Conjecture for the Gowers norm is false 2007 Shachar Lovett
Roy Meshulam
Alex Samorodnitsky
+ PDF None 2011 Shachar Lovett
Roy Meshulam
Alex Samorodnitsky
+ The inverse conjecture for the Gowers norm over finite fields in low characteristic 2011 Terence Tao
Tamar Ziegler
+ Inverse Conjecture for the Gowers norm is false. 2007 Shachar Lovett
Roy Meshulam
Alex Samorodnitsky
+ PDF Inverse conjecture for the gowers norm is false 2008 Shachar Lovett
Roy Meshulam
Alex Samorodnitsky
+ PDF Chat Large values of the Gowers-Host-Kra seminorms 2012 Tanja Eisner
Terence Tao
+ Large values of the Gowers-Host-Kra seminorms 2010 Tanja Eisner
Terence Tao
+ PDF Chat The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic 2011 Terence Tao
Tamar Ziegler
+ PDF Chat Correlation Testing for Affine Invariant Properties on $\mathbb{F}_p^n$ in the High Error Regime 2014 Hamed Hatami
Shachar Lovett
+ Correlation Testing for Affine Invariant Properties on $\mathbb{F}_p^n$ in the High Error Regime 2011 Hamed Hatami
Shachar Lovett
+ Correlation Testing for Affine Invariant Properties on $\mathbb{F}_p^n$ in the High Error Regime 2011 Hamed Hatami
Shachar Lovett
+ PDF Inverse theorem for certain directional Gowers uniformity norms 2023 Luka Milićević
+ The distribution of the $L_4$ norm of Littlewood polynomials 2019 Jonathan Jedwab
+ The distribution of the $L_4$ norm of Littlewood polynomials 2019 Jonathan Jedwab
+ Correlation testing for affine invariant properties on F <sub>p</sub> <sup>n</sup> in the high error regime 2011 Hamed Hatami
Shachar Lovett
+ Hard Functions for Low-Degree Polynomials over Prime Fields 2013 Andrej Bogdanov
Akinori Kawachi
Hidetoki Tanaka
+ Bias implies low rank for quartic polynomials 2019 Amichai Lampert
+ Hard Functions for Low-Degree Polynomials over Prime Fields 2011 Andrej Bogdanov
Akinori Kawachi
Hidetoki Tanaka
+ Bias vs structure of polynomials in large fields, and applications in effective algebraic geometry and coding theory 2015 Abhishek Bhowmick
Shachar Lovett