Formal punctured ribbons and two-dimensional local fields

Type: Article

Publication Date: 2009-01-01

Citations: 11

DOI: https://doi.org/10.1515/crelle.2009.029

Abstract

We investigate formal ribbons on curves. Roughly speaking, formal ribbon is a family of locally linearly compact vector spaces on a curve. We establish a one-to-one correspondence between formal ribbons on curves plus some geometric data and some subspaces of two-dimensional local fields.

Locations

  • arXiv (Cornell University) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Works That Cite This (12)

Action Title Year Authors
+ PDF Chat Геометрические свойства коммутативных подалгебр дифференциальных операторов в частных производных@@@Geometric properties of commutative subalgebras of partial differential operators 2015 Александр Борисович Жеглов
Alexander Zheglov
Херберт Курке
Herbert Kurke
+ PDF Chat Geometric properties of commutative subalgebras of partial differential operators 2014 Herbert Kurke
Alexander Zheglov
+ PDF Chat FORMAL GROUPS ARISING FROM FORMAL PUNCTURED RIBBONS 2010 Herbert Kurke
Denis Vasilievich Osipov
Alexander Zheglov
+ PDF Chat Representations of Higher Adelic Groups and Arithmetic 2011 A. N. Parshin
+ PDF Chat Geometric properties of commutative subalgebras of partial differential operators 2015 Alexander Zheglov
Herbert Kurke
+ PDF Chat Геометрические свойства коммутативных подалгебр дифференциальных операторов в частных производных 2015 Александр Борисович Жеглов
Alexander Zheglov
Херберт Курке
Herbert Kurke
+ PDF Chat Commuting differential operators and higher-dimensional algebraic varieties 2014 Herbert Kurke
Denis Vasilievich Osipov
Alexander Zheglov
+ Representations of Higher Adelic Groups and Arithmetic 2010 A. N. Parshin
+ Теория Шура-Сато для квазиэллиптических колец 2023 Alexander Zheglov
+ On rings of commuting partial differential operators 2011 Alexander Zheglov