Lyapunov spectrum of square-tiled cyclic covers

Type: Article

Publication Date: 2011-01-01

Citations: 53

DOI: https://doi.org/10.3934/jmd.2011.5.319

Abstract

A cyclic cover over $CP^1$ branched at four points inherits a natural flatstructure from the 'pillow' flat structure on the basic sphere. We give anexplicit formula for all individual Lyapunov exponents of the Hodge bundle overthe corresponding arithmetic Teichmüller curve. The key technical element isevaluation of degrees of line subbundles of the Hodge bundle, corresponding toeigenspaces of the induced action of deck transformations.

Locations

  • arXiv (Cornell University) - View - PDF
  • MPG.PuRe (Max Planck Society) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View
  • Journal of Modern Dynamics - View - PDF

Similar Works

Action Title Year Authors
+ Schwarz triangle mappings and Teichmüller curves: abelian square-tiled surfaces 2012 Alex Wright
+ PDF Chat Schwarz triangle mappings and Teichmüller curves: Abelian square-tiled surfaces 2012 Alex Wright
+ PDF Chat Square-tiled cyclic covers 2011 Giovanni Forni
Carlos Matheus
Anton Zorich
+ Schwarz triangle mappings and Teichm\"uller curves: abelian square-tiled surfaces 2012 Alex Wright
+ PDF Chat Covers of the projective line and the moduli space of quadratic differentials 2012 Dawei Chen
+ Covers of the projective line and the moduli space of quadratic differentials 2010 Dawei Chen
+ Lyapunov exponents, baker's map, and toral automorphisms 1999 J. R. Dorfman
+ LYAPUNOV SPECTRUM FOR RATIONAL MAPS 2010 Katrin Gelfert
Feliks Przytycki
Micha Rams
+ Lyapunov spectrum for rational maps 2008 Katrin Gelfert
Feliks Przytycki
Michał Rams
+ PDF Chat On the Lyapunov exponent of certain SL(2,ℝ)-valued cocycles II 2010 Roberta Fabbri
Russell Johnson
Luca Zampogni
+ PDF Chat On the Herman–Avila–Bochi formula for Lyapunov exponents of {\rm SL}(2,\mathbb{R}) -cocycles 2011 Alexandre Baraviera
João Lopes Dias
Pedro Duarte
+ Linear systems on multiple coverings of a smooth curve 2007 Edoardo Ballico
+ PDF Chat Lyapunov Exponents of Linear Cocycles 2016 Pedro Duarte
Silvius Klein
+ Schwarz triangle mappings and Teichmüller curves: the Veech-Ward-Bouw-Möller curves 2012 Alex Wright
+ Lyapunov exponents for some quasi-periodic cocycles 1997 Lai-Sang Young
+ A coding-free simplicity criterion for the Lyapunov exponents of Teichmueller curves 2012 Alex Eskin
Carlos Matheus
+ Periodicity of branched cyclic covers 1975 Alan H. Durfee
Louis H. Kauffman
+ Some Questions and Remarks on Lyapunov Irregular Behavior for Linear Cocycles 2023 Paulo Varandas
+ PDF Chat Continuity of Lyapunov exponents for cocycles with invariant holonomies 2018 Lucas Backes
Aaron Brown
Clark Butler
+ PDF Chat Continuity of the Lyapunov Exponents for Quasiperiodic Cocycles 2014 Pedro Duarte
Silvius Klein