Gaussian Random Particles with Flexible Hausdorff Dimension

Type: Article

Publication Date: 2015-06-01

Citations: 18

DOI: https://doi.org/10.1239/aap/1435236977

Abstract

Gaussian particles provide a flexible framework for modelling and simulating three-dimensional star-shaped random sets. In our framework, the radial function of the particle arises from a kernel smoothing, and is associated with an isotropic random field on the sphere. If the kernel is a von Mises-Fisher density, or uniform on a spherical cap, the correlation function of the associated random field admits a closed form expression. The Hausdorff dimension of the surface of the Gaussian particle reflects the decay of the correlation function at the origin, as quantified by the fractal index. Under power kernels we obtain particles with boundaries of any Hausdorff dimension between 2 and 3.

Locations

  • Advances in Applied Probability - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Gaussian Random Particles with Flexible Hausdorff Dimension 2015 Linda V. Hansen
Thordis L. Thorarinsdottir
Evgeni Y. Ovcharov
Tilmann Gneiting
Donald Richards
+ Gaussian Random Particles with Flexible Hausdorff Dimension 2015 Linda V. Hansen
Thordis L. Thorarinsdottir
Evgeni Ovcharov
Tilmann Gneiting
Donald Richards
+ Modelling and simulation of multifractal star-shaped particles 2019 Alfredo Alegría
+ Modelling and simulation of multifractal star-shaped particles 2019 Alfredo Alegría
+ Random measures and particle statistics 1987 Joseph Horowitz
+ PDF Chat Complexity of Gaussian Random Fields with Isotropic Increments 2023 Antonio Auffinger
Qiang Zeng
+ The $\mathcal{F}$-family of covariance functions: A Mat\'ern analogue for modeling random fields on spheres 2021 Alfredo Alegría
Francisco Cuevas‐Pacheco
Peter J. Diggle
Emilio Porcu
+ Simulation and Visualization of 3D-Spherical Distributions 2022 S. Rao Jammalamadaka
György Terdik
+ The $\mathcal{F}$-family of covariance functions: A Matérn analogue for modeling random fields on spheres 2021 Alfredo Alegría
Francisco Cuevas‐Pacheco
Peter J. Diggle
Emilio Porcu
+ PDF Chat Stochastic particle packing with specified granulometry and porosity 2011 Alejandro C. Frery
Lorena Rivarola‐Duarte
Viviane C. L. Ramos
Adeildo S. Ramos
William Wagner Matos Lira
+ CHAPTER 1: GAUSSIAN MEASURES ON INFINITE-DIMENSIONAL SPACES 2013 В. И. Богачев
+ Gaussian random measures 1986 Joseph Horowitz
+ Hausdorff Measure and Uniform Dimension for Space-Time Anisotropic Gaussian Random Fields 2024 Weijie Yuan
Zhenlong Chen
+ Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere 2019 Christian Lantuéjoul
Xavier Freulon
Didier Renard
+ Appendix C: Gaussian Distribution 2016 Tshilidzi Marwala
Ilyes Boulkaibet
Sondipon Adhikari
+ PDF Chat Gaussian random fields on the product of spheres: Theory and applications 2024 Alfredo Alegría
Galatia Cleanthous
Athanasios G. Georgiadis
Emilio Porcu
Philip A. White
+ Probability Distributions 2011 Dirk P. Kroese
Thomas Taimre
Zdravko I. Botev
+ PDF Chat Stochastic generation of particle structures with controlled degree of heterogeneity 2010 Iwan Schenker
Frank Filser
Ludwig J. Gauckler
+ Dimension Results for Space-anisotropic Gaussian Random Fields 2018 Wen Qing Ni
Zhen Long Chen
Wei Gang Wang
+ PDF Chat An R package for modeling and simulating generalized spherical and related distributions 2016 John P. Nolan