Generation of relative commutator subgroups in Chevalley groups

Type: Article

Publication Date: 2015-10-27

Citations: 19

DOI: https://doi.org/10.1017/s0013091515000188

Abstract

Abstract Let Φ be a reduced irreducible root system of rank greater than or equal to 2, let R be a commutative ring and let I , J be two ideals of R . In the present paper we describe generators of the commutator groups of relative elementary subgroups [ E(Φ,R,I),E(Φ,R,J) ] both as normal subgroups of the elementary Chevalley group E(Φ,R) , and as groups. Namely, let x α (ξ), α ∈ Φ ξ ∈ R , be an elementary generator of E(Φ,R) . As a normal subgroup of the absolute elementary group E(Φ,R) , the relative elementary subgroup is generated by x α (ξ), α ∈ Φ, ξ ∈ I . Classical results due to Stein, Tits and Vaserstein assert that as a group E(Φ,R,I) is generated by z α (ξ,η) , where α ∈ Φ, ξ ∈ I , η ∈ R . In the present paper, we prove the following birelative analogues of these results. As a normal subgroup of E(Φ,R) the relative commutator subgroup [E(Φ,R,I),E(Φ,R,J)] is generated by the following three types of generators: (i) [x α (ξ),z α (ζ,η)] , (ii) [x α (ξ),x _α (ζ)] and (iii) x α (ξζ) , where α ∈ Φ, ξ ∈ I, ζ ∈ J, η ∈ R . As a group, the generators are essentially the same, only that type (iii) should be enlarged to (iv) z α (ξζ,η) . For classical groups, these results, with many more computational proofs, were established in previous papers by the authors. There is already an amazing application of these results in the recent work of Stepanov on relative commutator width.

Locations

  • Proceedings of the Edinburgh Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Generation of relative commutator subgroups in Chevalley groups 2012 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Commutators of relative and unrelative elementary subgroups in Chevalley groups 2020 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Generation of relative commutator subgroups in Chevalley groups. II 2020 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Relative subgroups in Chevalley groups 2010 Roozbeh Hazrat
V. A. Petrov
N. A. Vavilov
+ Commutators of relative and unrelative elementary unitary groups 2020 N. A. Vavilov
Zuhong Zhang
+ Relative commutator calculus in Chevalley groups 2013 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Relative centralisers of relative subgroups 2020 N. A. Vavilov
Zuhong Zhang
+ Relative commutator calculus in Chevalley groups 2011 Roozbeh Hazrat
N. A. Vavilov
Zuhong Zhang
+ Structure of Chevalley groups over rings via universal localization 2015 A. V. Stepanov
+ PDF Chat COMMUTATORS OF ELEMENTARY SUBGROUPS: CURIOUSER AND CURIOUSER 2021 N. A. Vavilov
Zhiyue Zhang
+ Relative and unrelative elementary groups, revisited 2019 N. A. Vavilov
Zuhong Zhang
+ Relative and unrelative elementary groups, revisited 2019 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Relative Centralizers of Relative Subgroups 2022 N. A. Vavilov
Zuhong Zhang
+ PDF Chat Commutators of relative and unrelative elementary unitary groups 2022 N. A. Vavilov
Zuhong Zhang
+ Commutators of elementary subgroups: curiouser and curiouser 2020 N. A. Vavilov
Zuhong Zhang
+ Multiple commutators of elementary subgroups: end of the line 2019 N. A. Vavilov
Zuhong Zhang
+ Multiple commutators of elementary subgroups: end of the line 2020 N. A. Vavilov
Zuhong Zhang
+ Free product subgroups between Chevalley groups <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi mathvariant="normal">G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Φ</mml:mi><mml:mo>,</mml:mo><mml:mi>F</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi mathvariant="normal">G</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mi>Φ</mml… 2010 A. V. Stepanov
+ PDF Chat On linear representations of Chevalley groups over commutative rings 2010 Igor A. Rapinchuk
+ PDF Chat Basic reductions in the description of normal subgroups 2008 N. A. Vavilov
Anastasia Stavrova