RANDOM MATRICES: SHARP CONCENTRATION OF EIGENVALUES

Type: Article

Publication Date: 2013-07-01

Citations: 37

DOI: https://doi.org/10.1142/s201032631350007x

Abstract

Let [Formula: see text] be a Wigner matrix whose entries have vanishing third moment, normalized so that the spectrum is concentrated in the interval [-2, 2]. We prove a concentration bound for N I = N I (W n ), the number of eigenvalues of W n in an interval I. Our result shows that N I decays exponentially with standard deviation at most O( log O(1) n). This is best possible up to the constant exponent in the logarithmic term. As a corollary, the bulk eigenvalues are localized to an interval of width O( log O(1) n/n); again, this is optimal up to the exponent. These results strengthen recent results of Erdős, Yau and Yin (under the extra assumption of vanishing third moment). Our proof is relatively simple and relies on the Lindeberg replacement argument.

Locations

  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Random matrices: Sharp concentration of eigenvalues 2012 Terence Tao
Van Vu
+ PDF Chat RANDOM MATRICES: THE CIRCULAR LAW 2008 Terence Tao
Van Vu
+ On the concentration of eigenvalues of random symmetric matrices 2000 Michael Krivelevich
Van H. Vu
+ Sharp nonasymptotic bounds on the norm of random matrices with independent entries 2016 Afonso S. Bandeira
Ramon van Handel
+ Random Matrices: The circular Law 2007 Terence Tao
Van Vu
+ Random matrices: Law of the determinant 2014 Hoi H. Nguyen
Van Vu
+ Concentration of distances in Wigner matrices 2017 Hoi H. Nguyen
+ PDF Concentration of distances in Wigner matrices 2017 Hoi H. Nguyen
+ Concentration of distances in Wigner matrices 2017 Hoi H. Nguyen
+ Localization and delocalization of eigenvectors for heavy-tailed random matrices 2012 Charles Bordenave
Alice Guionnet
+ Localization and delocalization of eigenvectors for heavy-tailed random matrices 2012 Charles Bordenave
Alice Guionnet
+ Random Matrices with Log-Range Correlations, and Log-Sobolev Inequalities 2014 Todd Kemp
David Zimmermann
+ Random Matrices with Log-Range Correlations, and Log-Sobolev Inequalities 2014 Todd Kemp
David Zimmermann
+ Random matrices: Localization of the eigenvalues and the necessity of four moments 2010 Terence Tao
Van Vu
+ PDF Localization and delocalization of eigenvectors for heavy-tailed random matrices 2013 Charles Bordenave
Alice Guionnet
+ PDF Chat Diffusion Profile for Random Band Matrices: A Short Proof 2019 Yukun He
Matteo Marcozzi
+ PDF Largest eigenvalues and eigenvectors of band or sparse random matrices 2014 Florent Benaych-Georges
Sandrine Péché
+ PDF Chat Sparse general Wigner-type matrices: Local law and eigenvector delocalization 2019 Ioana Dumitriu
Yizhe Zhu
+ PDF Spectral radius of random matrices with independent entries 2021 Johannes Alt
László Erdős
Torben Krüger
+ Spectral radius of random matrices with independent entries 2019 Johannes Alt
László Erdős
Torben Krüger