Type II blow up for the energy supercritical NLS

Type: Article

Publication Date: 2015-01-01

Citations: 39

DOI: https://doi.org/10.4310/cjm.2015.v3.n4.a1

Abstract

We consider the energy super critical nonlinear Schr\odinger equation $$i\pa_tu+\Delta u+u|u|^{p-1}=0$$ in large dimensions $d\geq 11$ with spherically symmetric data. For all $p>p(d)$ large enough, in particular in the super critical regime, we construct a family of smooth finite time blow up solutions which become singular via concentration of a universal profile with the so called type II quantized blow up rates. The essential feature of these solutions is that all norms below scaling remain bounded. Our analysis fully revisits the construction of type II blow up solutions for the corresponding heat equation, which was done using maximum principle techniques following. Instead we develop a robust energy method, in continuation of the works in the energy and mass critical cases. This shades a new light on the essential role played by the solitary wave and its tail in the type II blow up mechanism, and the universality of the corresponding singularity formation in both energy critical and super critical regimes.

Locations

  • Cambridge Journal of Mathematics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View

Similar Works

Action Title Year Authors
+ Type II blow up for the energy supercritical NLS 2014 Frank Merle
Pierre Raphaël
Igor Rodnianski
+ Type II blow up for the energy supercritical NLS 2014 Frank Merle
Pierre Raphaël
Igor Rodnianski
+ Type II blow up for the energy supercritical wave equation 2014 Charles Collot
+ Blow up of the critical norm for some radial <i>L</i><sup xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> super critical nonlinear Schrödinger equations 2008 Frank Merle
Pierre Raphaël
+ Blow up and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schrödinger equation 2020 Luccas Campos
Mykael Cardoso
+ Blow up and scattering criteria above the threshold for the focusing inhomogeneous nonlinear Schr\"odinger equation 2020 Luccas Campos
Mykael Cardoso
+ Type II blow up manifolds for the energy supercritical wave equation 2014 Charles Collot
+ PDF Chat The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation 2005 Frank Merle
Pierre Raphaël
+ PDF Chat Blow up dynamic and upper bound on the blow up rate for critical nonlinear Schrödinger equation 2002 Frank Merle
Pierre Raphaël
+ On blow up for the energy super critical defocusing non linear Schrödinger equations 2019 Frank Merle
Pierre Raphaël
Igor Rodnianski
Jérémie Szeftel
+ Asymptotic and limiting profiles of blowup solutions of the nonlinear Schr�dinger equation with critical power 1999 Hayato Nawa
+ On blow up for the energy super critical defocusing non linear Schr\"odinger equations 2019 Frank Merle
Pierre Raphaël
Igor Rodnianski
Jérémie Szeftel
+ Finite-time blowup for a Schrödinger equation with nonlinear source term 2018 Thierry Cazenave
Yvan Martel
Lifeng Zhao
+ Low regularity blowup solutions for the mass-critical NLS in higher dimensions 2019 Chenmin Sun
Jiqiang Zheng
+ PDF Chat Minimal mass blow-up solutions for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>critical NLS with inverse-square potential 2017 Elek Csobo
François Genoud
+ Construction of type II blowup solutions for the 1-corotational energy supercritical wave maps 2018 Tej‐Eddine Ghoul
Slim Ibrahim
Van Tien Nguyen
+ PDF Chat Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton 2014 Yvan Martel
Frank Merle
Pierre Raphaël
+ PDF Chat Going Beyond the Threshold: Scattering and Blow-up in the Focusing NLS Equation 2014 Thomas Duyckaerts
Svetlana Roudenko
+ Threshold and generic type I behaviors for a supercritical nonlinear heat equation 2011 Hiroshi Matano
Frank Merle
+ PDF Chat Strongly interacting blow up bubbles for the mass critical nonlinear Schrödinger equation 2018 Yvan Martel
Pierre Raphaël