Wegner Estimate and Level Repulsion for Wigner Random Matrices

Type: Article

Publication Date: 2009-08-29

Citations: 202

DOI: https://doi.org/10.1093/imrn/rnp136

Abstract

We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/ N. Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates around the Wigner semicircle law on energy scales η ≫ N−1. This result establishes the semicircle law on the optimal scale and it removes a logarithmic factor from our previous result [6]. We then show a Wegner estimate, i.e., that the averaged density of states is bounded. Finally, we prove that the eigenvalues of a Wigner matrix repel each other, in agreement with the universality conjecture.

Locations

  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF
  • International Mathematics Research Notices - View
  • arXiv (Cornell University) - View - PDF
  • arXiv (Cornell University) - PDF

Similar Works

Action Title Year Authors
+ Wegner estimate and level repulsion for Wigner random matrices 2008 László Erdős
Benjamin Schlein
Horng‐Tzer Yau
+ PDF Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices 2009 László Erdős
Benjamin Schlein
Horng‐Tzer Yau
+ Wegner estimate and upper bound on the eigenvalue condition number of non-Hermitian random matrices 2023 László Erdős
Hong Chang Ji
+ Lectures on the local semicircle law for Wigner matrices 2016 Florent Benaych-Georges
Antti Knowles
+ Eigenvector Distribution of Wigner Matrices 2011 Antti Knowles
Jun Yin
+ PDF Eigenvector distribution of Wigner matrices 2011 Antti Knowles
Jun Yin
+ Wigner matrices 2015 Gérard Ben Arous
Alice Guionnet
+ A large deviation principle for Wigner matrices without Gaussian tails 2014 Charles Bordenave
Pietro Caputo
+ Average density of states for Hermitian Wigner matrices 2011 Anna Maltsev
Benjamin Schlein
+ Universality for general Wigner-type matrices 2015 Oskari Ajanki
László Erdős
Torben Krüger
+ Universality for general Wigner-type matrices 2015 Oskari Ajanki
László Erdős
Torben Krüger
+ A Wegner estimate for Wigner matrices 2011 Anna Maltsev
Benjamin Schlein
+ PDF Chat A Wegner estimate for Wigner matrices 2011 Anna Maltsev
Benjamin Schlein
+ Average Density of States for Hermitian Wigner Matrices 2010 Anna Maltsev
Benjamin Schlein
+ Average Density of States for Hermitian Wigner Matrices 2010 Anna Maltsev
Benjamin Schlein
+ PDF Wegner estimate and upper bound on the eigenvalue condition number of non‐Hermitian random matrices 2024 László Erdős
Hong Chang Ji
+ Rate of convergence for non-Hermitian random matrices and their products 2020 Jonas Jalowy
+ PDF Universality for general Wigner-type matrices 2016 Oskari Ajanki
László Erdős
Torben Krüger
+ PDF Optimal delocalization for generalized Wigner matrices 2021 Lucas Benigni
Patrick Lopatto
+ Optimal Delocalization for Generalized Wigner Matrices 2020 Lucas Benigni
Patrick Lopatto