Singular values of large non-central random matrices

Type: Article

Publication Date: 2019-06-07

Citations: 8

DOI: https://doi.org/10.1142/s2010326320500124

Abstract

We study largest singular values of large random matrices, each with mean of a fixed rank $K$. Our main result is a limit theorem as the number of rows and columns approach infinity, while their ratio approaches a positive constant. It provides a decomposition of the largest $K$ singular values into the deterministic rate of growth, random centered fluctuations given as explicit linear combinations of the entries of the matrix, and a term negligible in probability. We use this representation to establish asymptotic normality of the largest singular values for random matrices with means that have block structure. We also deduce asymptotic normality for the largest eigenvalues of the normalized covariance matrix arising in a model of population genetics.

Locations

  • Random Matrices Theory and Application - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Eigenvalues of sample covariance matrices of non-linear processes with infinite variance 2012 Richard A. Davis
Oliver Pfaffel
+ Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails 2013 Richard A. Davis
Oliver Pfaffel
Robert Stelzer
+ Limit Theory for the largest eigenvalues of sample covariance matrices with heavy-tails 2011 Richard A. Davis
Oliver Pfaffel
Robert Stelzer
+ Limit Theory for the largest eigenvalues of sample covariance matrices with heavy-tails 2011 Richard A. Davis
Oliver Pfaffel
Robert Stelzer
+ PDF Chat On singular values distribution of a matrix large auto-covariance in the ultra-dimensional regime 2015 Qinwen Wang
Jianfeng Yao
+ PDF Chat Random Matrices: the Distribution of the Smallest Singular Values 2010 Terence Tao
Van Vu
+ PDF Chat Large deviations of extreme eigenvalues of generalized sample covariance matrices 2021 Antoine Maillard
+ The limit of the smallest singular value of random matrices with i.i.d. entries 2015 Konstantin Tikhomirov
+ Extremal singular values of random matrix products and Brownian motion on GL(N,C) 2022 Andrew Ahn
+ The singular values and vectors of low rank perturbations of large rectangular random matrices 2012 Florent Benaych-Georges
Raj Rao Nadakuditi
+ PDF Chat RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE 2011 Ke Wang
+ PDF Chat Smallest singular value of sparse random matrices 2012 Alexander E. Litvak
Omar Rivasplata
+ Smallest singular value of sparse random matrices 2011 A. G. Litvak
Omar Rivasplata
+ Smallest singular value of sparse random matrices 2011 Alexander E. Litvak
Omar Rivasplata
+ PDF Chat Laws of large numbers for eigenvectors and eigenvalues associated to random subspaces in a tensor product 2010 Serban Belinschi
Benoı̂t Collins
Ion Nechita
+ PDF Chat LIMIT OF THE SMALLEST EIGENVALUE OF A LARGE DIMENSIONAL SAMPLE COVARIANCE MATRIX 2008 Zhidong Bai
Yanqing Yin
+ PDF Chat On singular values of data matrices with general independent columns 2023 Tianxing Mei
Chen Wang
Jianfeng Yao
+ PDF Chat Asymptotic properties of eigenmatrices of a large sample covariance matrix 2011 Zhidong Bai
H. X. Liu
Wing‐Keung Wong
+ Large Random Matrices 2017 Robert C. Qiu
Paul Antonik
+ PDF Chat Measure Concentration and Non-asymptotic Singular Values Distributions of Random Matrices 2018 Wei Feng