Symplectic Non-Squeezing for the Cubic NLS on the Line

Type: Article

Publication Date: 2017-07-10

Citations: 3

DOI: https://doi.org/10.1093/imrn/rnx152

Abstract

We prove symplectic non-squeezing for the cubic nonlinear Schrödinger equation on the line via finite-dimensional approximation.

Locations

  • International Mathematics Research Notices - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Symplectic non-squeezing for the cubic NLS on the line 2016 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ Symplectic non-squeezing for the discrete nonlinear Schrodinger equation 2016 Alexander Tumanov
+ Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on $\R^2$ 2016 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrödinger equation on ℝ2 2021 Rowan Killip
Monica Vişan
Xiaoyi Zhang
+ The Schrödinger equation with cubic nonlinearities on the half-line in low regularity spaces 2024 A. Alexandrou Himonas
Fangchi Yan
+ Theoretical study of the nonlinear cubic-quintic Schrodinger equation 1985 Sukhpal S. Sanghera
+ Symplectic non-squeezing for mass subcritical fourth-order Schrödinger equations 2017 Qianyun Miao
+ Symplectic methods for the nonlinear Schrödinger equation 1994 B. M. Herbst
F. Váradi
Mark J. Ablowitz
+ A Rigorous Derivation of the Hamiltonian Structure for the Nonlinear Schr\"odinger Equation 2019 Dana Mendelson
Andrea R. Nahmod
Nataša Pavlović
Matthew Rosenzweig
Gigliola Staffilani
+ A geometric characterization of the nonlinear Schrödinger equation and its applications 2002 Qing Ding
ZHU ZUO-NONG
+ Discrete Schrödinger–Newton equations with power nonlinearity 2024 D. Hennig
+ Dynamic properties of the cubic nonlinear Schrödinger equation by symplectic method 2005 Xue‐Shen Liu
Wei Jia-Yu
Peizhu Ding
+ A Rigorous Derivation of the Hamiltonian Structure for the Nonlinear Schrödinger Equation 2019 Dana Mendelson
Andrea R. Nahmod
Nataša Pavlović
Matthew Rosenzweig
Gigliola Staffilani
+ 2. Integrable Theory for the Nonlinear Schrödinger Equation 2010
+ Statistical mechanics of nonlinear wave equations (4): Cubic Schrödinger 1995 H. P. McKean
+ PDF Chat Decay estimates for nonlinear Schrödinger equations 2021 Chenjie Fan
Zehua Zhao
+ PDF Chat Non-linear schrödinger equation with logarithmic non-linearity 2021 Guillaume Ferriere
+ The nonlinear Schrödinger equation in the finite line 1994 J.I. Ramos
Francisco R. Villatoro
+ Further regularity results for almost cubic nonlinear Schrödinger equation 2009 Seckin Demirbas
A. Eden
Elif Kuz
+ Dispersion Analysis of Multi-symplectic Scheme for the Nonlinear Schrödinger Equations 2020 Haochen Li
Jianqiang Sun
Hang Ye
HE Xue-jun