Multi-tiling and Riesz bases

Type: Article

Publication Date: 2013-11-12

Citations: 70

DOI: https://doi.org/10.1016/j.aim.2013.10.019

Locations

  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF
  • RECERCAT (Consorci de Serveis Universitaris de Catalunya) - View - PDF

Similar Works

Action Title Year Authors
+ Multi-tiling and Riesz bases 2012 Sigrid Grepstad
Nir Lev
+ Multi-tiling and Riesz bases 2012 Sigrid Grepstad
Nir Lev
+ Riesz Bases of Exponentials on Unbounded Multi-tiles 2017 Carlos Cabrelli
Diana Carbajal
+ Riesz Bases of Exponentials on Unbounded Multi-tiles 2017 Carlos Cabrelli
Diana Carbajal
+ Multiple lattice tiles and Riesz bases of exponentials 2013 Mihail N. Kolountzakis
+ Multiple lattice tiles and Riesz bases of exponentials 2013 Mihail N. Kolountzakis
+ PDF Chat Multiple lattice tiles and Riesz bases of exponentials 2014 Mihail N. Kolountzakis
+ Riesz bases of exponentials for multi-tiling measures 2023 Chun‐Kit Lai
Alexander Sheynis
+ PDF Chat Riesz bases of exponentials for multi-tiling measures 2023 Chun‐Kit Lai
Alexander Sheynis
+ Riesz basis of exponentials for multi-tiling measures 2022 Alexander Sheynis
+ PDF Chat Examples of Riesz Bases of Exponentials for Multi-tiling Domains and Their Duals 2023 Christina Frederick
Karamatou Yacoubou Djima
+ Finding duality for Riesz bases of exponentials on multi-tiles. 2019 Christina Frederick
Kasso A. Okoudjou
+ Finding duality for Riesz bases of exponentials on multi-tiles 2019 Christina Frederick
Kasso A. Okoudjou
+ Riesz bases of exponentials on unbounded multi-tiles 2017 Carlos Cabrelli
Diana Carbajal
+ PDF Chat Finding duality for Riesz bases of exponentials on multi-tiles 2020 Christina Frederick
Kasso A. Okoudjou
+ PDF Chat Combining Riesz bases 2014 Gady Kozma
Shahaf Nitzan
+ Riesz bases of exponentials and the Bohr topology 2020 Carlos Cabrelli
Kathryn E. Hare
Ursula Molter
+ Riesz bases of exponentials and the Bohr topology 2020 Carlos Cabrelli
Kathryn E. Hare
Ursula Molter
+ Riesz bases, Meyer's quasicrystals, and bounded remainder sets 2016 Sigrid Grepstad
Nir Lev
+ Riesz bases, Meyer's quasicrystals, and bounded remainder sets 2016 Sigrid Grepstad
Nir Lev