Gelfand–Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation

Type: Article

Publication Date: 2015-05-02

Citations: 26

DOI: https://doi.org/10.1016/j.jfa.2015.04.017

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • Journal of Functional Analysis - View

Similar Works

Action Title Year Authors
+ Gelfand-Shilov and Gevrey smoothing effect for the spatially inhomogeneous non-cutoff Kac equation 2014 Yoshinori Morimoto
Nicolás Lerner
Karel Pravda‐Starov
Chao-Jiang Xu
+ PDF Chat Gelfand-Shilov smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off 2020 Wei‐Xi Li
Lvqiao Liu
+ PDF Chat Gevrey regularity for solutions of the non-cutoff Boltzmann equation: The spatially inhomogeneous case 2013 Teng‐Fei Zhang
Zhaoyang Yin
+ Gevrey Regularity for Solutions of the Non-Cutoff Boltzmann Equation: Spatially Inhomogeneous Case 2013 Tengfei Zhang
Zhaoyang Yin
+ Gelfand-Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff 2012 Nicolás Lerner
Yoshinori Morimoto
Karel Pravda–Starov
Chao-Jiang Xu
+ PDF Chat Gelfand–Shilov smoothing properties of the radially symmetric spatially homogeneous Boltzmann equation without angular cutoff 2013 Nicolás Lerner
Y. Morimoto
Karel Pravda‐Starov
Chao-Jiang Xu
+ Gevrey Smoothing Effect for Solutions of the Non-Cutoff Boltzmann Equation in Maxwellian Molecules Case 2013 Tengfei Zhang
Zhaoyang Yin
+ Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation 2009 Nadia Lekrine
Chao-Jiang Xu
+ The Cauchy problem for the inhomogeneous non-cutoff Kac equation in critical Besov space 2020 Hongmei Cao
Hao‐Guang Li
Chao-Jiang Xu
Jiang Xu
+ The Cauchy problem for the inhomogeneous non-cutoff Kac equation in critical Besov space 2019 Hongmei Cao
Hao‐Guang Li
Chao-Jiang Xu
Jiang Xu
+ Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off 2018 Hua Chen
Xin Hu
Wei‐Xi Li
Jinpeng Zhan
+ PDF Chat Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff 2012 Teng‐Fei Zhang
Zhaoyang Yin
+ Gelfand-Shilov smoothing effect for the Cauchy problem of the non-cutoff spatially homogeneous Boltzmann equation 2014 Léo Glangetas
Hao‐Guang Li
Chao-Jiang Xu
+ Gevrey regularity of spatially homogeneous Boltzmann equation without cutoff 2012 Tengfei Zhang
Zhaoyang Yin
+ PDF Chat Gevrey regularizing effect of the Cauchy problem for non-cutoff homogeneous Kac's equation 2009 Nadia Lekrine
Chao-Jiang Xu
+ PDF Chat The Gevrey smoothing effect for the spatially inhomogeneous Boltzmann equations without cut-off 2021 Hua Chen
Xin Hu
Wei‐Xi Li
Jinpeng Zhan
+ Gelfand-Shilov and Gevrey smoothing effect of the Cauchy problem for Fokker-Planck equation 2019 Hao‐Guang Li
Jing Liu
+ Gevrey Smoothing Effect for Solutions of the Non-Cutoff Boltzmann Equation for Soft Potential 2013 Tengfei Zhang
Zhaoyang Yin
+ PDF Chat Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation 2016 Léo Glangetas
Hao‐Guang Li
Chao-Jiang Xu
+ Gevrey Smoothing Effect of Solutions to Non-Cutoff Boltzmann Equation for Soft Potential with Mild and Critical Singularity 2013 Tengfei Zhang
Zhaoyang Yin