Phase transitions in the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mi>p</mml:mi></mml:msub></mml:math>and U(1) clock models

Type: Article

Publication Date: 2019-09-17

Citations: 20

DOI: https://doi.org/10.1103/physrevb.100.094428

Abstract

Quantum phase transitions are studied in the nonchiral $p$-clock chain, and a new explicitly U(1)-symmetric clock model, by monitoring the ground-state fidelity susceptibility. For $p\ensuremath{\ge}5$, the self-dual ${\mathbb{Z}}_{p}$-symmetric chain displays a double-hump structure in the fidelity susceptibility with both peak positions and heights scaling logarithmically to their corresponding thermodynamic values. This scaling is precisely as expected for two Beresinskii-Kosterlitz-Thouless (BKT) transitions located symmetrically about the self-dual point, and so confirms numerically the theoretical scenario that sets $p=5$ as the lowest $p$ supporting BKT transitions in ${\mathbb{Z}}_{p}$-symmetric clock models. For our U(1)-symmetric, non-self-dual minimal modification of the $p$-clock model we find that the phase diagram depends strongly on the parity of $p$ and only one BKT transition survives for $p\ensuremath{\ge}5$. Using asymptotic calculus we map the self-dual clock model exactly, in the large $p$ limit, to the quantum $O(2)$ rotor chain. Finally, using bond-algebraic dualities we estimate the critical BKT transition temperatures of the classical planar $p$-clock models defined on square lattices, in the limit of extreme spatial anisotropy. Our values agree remarkably well with those determined via classical Monte Carlo for isotropic lattices. This work highlights the power of the fidelity susceptibility as a tool for diagnosing the BKT transitions even when only discrete symmetries are present.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Monte Carlo study of duality and the Berezinskii-Kosterlitz-Thouless phase transitions of the two-dimensional $q$-state clock model in flow representations 2022 Hao Chen
Pengcheng Hou
Sheng Fang
Youjin Deng
+ PDF Chat Kosterlitz-Thouless phase and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi><mml:mi>d</mml:mi></mml:msub></mml:math> topological quantum phase 2020 Mohammad Hossein Zarei
+ PDF Chat Monte Carlo study of duality and the Berezinskii-Kosterlitz-Thouless phase transitions of the two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math> -state clock model in flow representations 2022 Hao Chen
Pengcheng Hou
Sheng Fang
Youjin Deng
+ Anomalous U(1) to Z$_q$ cross-over in quantum and classical $q$-state clock models 2020 Pranay Patil
Hui Shao
Anders W. Sandvik
+ PDF Chat Unconventional U(1) to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Z</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math> crossover in quantum and classical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math> -state clock models 2021 Pranay Patil
Hui Shao
Anders W. Sandvik
+ Clock model interpolation and symmetry breaking in O(2) models 2021 Leon Hostetler
Jin Zhang
Ryo Sakai
Judah Unmuth-Yockey
Alexei Bazavov
Yannick Meurice
+ PDF Chat Clock model interpolation and symmetry breaking in O(2) models 2022 Leon Hostetler
Jin Zhang
Ryo Sakai
Judah Unmuth-Yockey
Alexei Bazavov
Yannick Meurice
+ Supporting data for "Multipartite entangled states in dipolar quantum simulators" 2022 Tommaso Comparin
Fabio Mezzacapo
Tommaso Roscilde
+ Supporting data for "Multipartite entangled states in dipolar quantum simulators" 2022 Tommaso Comparin
Fabio Mezzacapo
Tommaso Roscilde
+ PDF Chat Quantum phase transitions out of a<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>×</mml:mo><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>topological phase 2013 Saeed S. Jahromi
S. Farhad Masoudi
Mehdi Kargarian
K. P. Schmidt
+ PDF Chat Symmetry-protected topological phases and transition in a frustrated spin-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac></mml:math>XXZ chain 2014 Hiroshi Ueda
Shigeki Onoda
+ Diagnosing weakly first-order phase transitions by coupling to order parameters 2021 Jonathan D’Emidio
Alexander A. Eberharter
Andreas M. Läuchli
+ Bijecting the BKT transition 2023 Piet Lammers
+ PDF Chat Quantum phases of two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> gauge theory coupled to single-component fermion matter 2022 Umberto Borla
Bhilahari Jeevanesan
Frank Pollmann
Sergej Moroz
+ PDF Chat Boltzmann–Gibbs states in topological quantum walks and associated many-body systems: fidelity and Uhlmann parallel transport analysis of phase transitions 2017 Bruno Mera
Chrysoula Vlachou
Nikola Paunković
V. R. Vieira
+ PDF Chat Quantum phase transitions in a two-dimensional quantum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi><mml:mi>X</mml:mi></mml:mrow></mml:math>model: Ground-state fidelity and entanglement 2009 Bo Li
Sheng-Hao Li
Huan-Qiang Zhou
+ PDF Chat Finite- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>m</mml:mi></mml:math> scaling analysis of Berezinskii-Kosterlitz-Thouless phase transitions and entanglement spectrum for the six-state clock model 2020 Hiroshi Ueda
Kouichi Okunishi
Kenji Harada
Roman Krčmár
Andrej Gendiar
Seiji Yunoki
Tomotoshi Nishino
+ PDF Chat Constructing Emergent U(1) Symmetries in the Gamma-prime $\left(\bf \Gamma^{\prime} \right)$ model 2024 Sagar Ramchandani
Simon Trebst
CiarĂĄn Hickey
+ PDF Chat Symmetries, correlation functions, and entanglement of general quantum Motzkin spin-chains 2024 Varun Menon
Andi Gu
Ramis Movassagh
+ PDF Chat Critical properties of the two-dimensional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math> -state clock model 2020 Ziqian Li
Li‐Ping Yang
Z. Y. Xie
Hong-Hao Tu
Haijun Liao
Tao Xiang