DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks

Type: Article

Publication Date: 2018-06-01

Citations: 1416

DOI: https://doi.org/10.1109/cvpr.2018.00854

Download PDF

Abstract

We present DeblurGAN, an end-to-end learned method for motion deblurring. The learning is based on a conditional GAN and the content loss. DeblurGAN achieves state-of-the art performance both in the structural similarity measure and visual appearance. The quality of the deblurring model is also evaluated in a novel way on a real-world problem - object detection on (de-)blurred images. The method is 5 times faster than the closest competitor - Deep-Deblur [25]. We also introduce a novel method for generating synthetic motion blurred images from sharp ones, allowing realistic dataset augmentation. The model, code and the dataset are available at https://github.com/KupynOrest/DeblurGAN.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks 2017 Orest Kupyn
Volodymyr Budzan
Mykola Mykhailych
Dmytro Mishkin
Jiřı́ Matas
+ FMD-cGAN: Fast Motion Deblurring using Conditional Generative Adversarial Networks 2021 Jatin Kumar
Indra Deep Mastan
Shanmuganathan Raman
+ PDF Chat DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better 2019 Orest Kupyn
Tetiana Martyniuk
Junru Wu
Zhangyang Wang
+ DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better 2019 Orest Kupyn
Tetiana Martyniuk
Junru Wu
Zhangyang Wang
+ Blind Motion Deblurring with Cycle Generative Adversarial Networks 2019 Quan Yuan
Junxia Li
Lingwei Zhang
Zhefu Wu
Guangyu Liu
+ Reblur2Deblur: Deblurring Videos via Self-Supervised Learning 2018 Huaijin Chen
Jinwei Gu
Orazio Gallo
Ming-Yu Liu
Ashok Veeraraghavan
Jan Kautz
+ PDF Chat Reblur2Deblur: Deblurring videos via self-supervised learning 2018 Huaijin Chen
Jinwei Gu
Orazio Gallo
Ming-Yu Liu
Ashok Veeraraghavan
Jan Kautz
+ PDF Chat Human-Aware Motion Deblurring 2019 Ziyi Shen
Wenguan Wang
Xiankai Lu
Jianbing Shen
Haibin Ling
Tingfa Xu
Ling Shao
+ PDF Chat Adversarial Spatio-Temporal Learning for Video Deblurring 2018 Kaihao Zhang
Wenhan Luo
Yiran Zhong
Lin Ma
Wei Liu
Hongdong Li
+ PDF Chat Edge Heuristic GAN for Non-Uniform Blind Deblurring 2019 Shuai Zheng
Zhenfeng Zhu
Jian Cheng
Yandong Guo
Yao Zhao
+ PDF Chat FMD-cGAN: Fast Motion Deblurring Using Conditional Generative Adversarial Networks 2022 Jatin Kumar
Indra Deep Mastan
Shanmuganathan Raman
+ Deep Generative Filter for Motion Deblurring 2017 Sainandan Ramakrishnan
Shubham Pachori. Aalok Gangopadhyay
Shanmuganathan Raman
+ Deep Generative Filter for Motion Deblurring 2017 Sainandan Ramakrishnan
Shubham Pachori. Aalok Gangopadhyay
Shanmuganathan Raman
+ Human-Aware Motion Deblurring 2020 Ziyi Shen
Wenguan Wang
Xiankai Lu
Jianbing Shen
Haibin Ling
Tingfa Xu
Ling Shao
+ Rethinking Motion Deblurring Training: A Segmentation-Based Method for Simulating Non-Uniform Motion Blurred Images 2022 Guillermo Carbajal
Patricia Vitoria
Pablo Musé
José Lezama
+ Application of Deep Learning in Blind Motion Deblurring: Current Status and Future Prospects 2024 Yawen Xiang
Heng Zhou
Chengyang Li
Fangwei Sun
Zhongbo Li
Xie Yong-qiang
+ SL-CycleGAN: Blind Motion Deblurring in Cycles using Sparse Learning 2021 Ali Syed Saqlain
Liyun Wang
Fang Fang
+ Deep Video Deblurring 2016 Shuochen Su
Mauricio Delbracio
Jue Wang
Guillermo Sapiro
Wolfgang Heidrich
Oliver Wang
+ Deep Video Deblurring. 2016 Shuochen Su
Mauricio Delbracio
Jue Wang
Guillermo Sapiro
Wolfgang Heidrich
Oliver Wang
+ Region-Adaptive Dense Network for Efficient Motion Deblurring 2019 Kuldeep Purohit
A. N. Rajagopalan