On the arithmetic Kakeya conjecture of Katz and Tao

Type: Article

Publication Date: 2018-11-02

Citations: 6

DOI: https://doi.org/10.1007/s10998-018-0270-z

Abstract

The arithmetic Kakeya conjecture, formulated by Katz and Tao (Math Res Lett 6(5-6):625-630, 1999), is a statement about addition of finite sets. It is known to imply a form of the Kakeya conjecture, namely that the upper Minkowski dimension of a Besicovitch set in Rn is n. In this note we discuss this conjecture, giving a number of equivalent forms of it. We show that a natural finite field variant of it does hold. We also give some lower bounds.

Locations

  • Periodica Mathematica Hungarica - View - PDF
  • PubMed Central - View
  • PubMed - View

Similar Works

Action Title Year Authors
+ On the arithmetic Kakeya conjecture of Katz and Tao 2017 Ben Green
Imre Z. Ruzsa
+ PDF Chat Generalized Arithmetic Kakeya 2024 Cosmin Pohoata
Dmitrii Zakharov
+ PDF Chat The Kakeya Set conjecture over Z/NZ for general N 2024 Manik Dhar
+ The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$ 2021 Manik Dhar
+ The Kakeya Set Conjecture for $\mathbb{Z}/N\mathbb{Z}$ for general $N$ 2021 Manik Dhar
+ PDF Chat Improved lower bound on the size of Kakeya sets over finite fields 2008 Shubhangi Saraf
Madhu Sudan
+ A Generalization of the Chevalleyā€“Warning and Axā€“Katz Theorems with a View Towards Combinatorial Number Theory 2023 David J. Grynkiewicz
+ On the Kakeya Maximal Function Conjecture 2017 Johan Aspegren
+ Improved lower bound on the size of Kakeya sets over finite fields 2008 Shubhangi Saraf
Madhu Sudan
+ On the Dimension of Kakeya Sets and Related Maximal Inequalities 1999 Jean Bourgain
+ On number theory and Kustaa Inkeri 2013 Alfred J. van der Poorten
+ Pattern Problems related to the Arithmetic Kakeya Conjecture 2020 Charlie Cowen-Breen
Elene Karangozishvili
Narmada Varadarajan
Thomas J. Wang
+ An improved bound for the Minkowski dimension of Besicovitch sets in medium dimension 2000 Izabella Łaba
Terence Tao
+ Kakeya sets and the method of multiplicities 2009 Shubhangi Saraf
+ A generalization of the Hirschhornā€“Farkasā€“Kra septagonal numbers identity 2001 Frank G. Garvan
+ O problema de Kakeya 2016 Pedro Alberto Rey Jimenez
+ Maximal and $(m,Īµ)$-Kakeya bounds over $\mathbb{Z}/N\mathbb{Z}$ for general $N$ 2022 Manik Dhar
+ PDF Chat The Finite Field Kakeya Problem 2008 Aart Blokhuis
Francesco Mazzocca
+ The š‘-adic Kakeya conjecture 2022 Bodan Arsovski
+ The Finite Field Kakeya Problem 2009 Aart Blokhuis
Francesco Mazzocca