The least modulus for which consecutive polynomial values are distinct

Type: Article

Publication Date: 2015-10-17

Citations: 0

DOI: https://doi.org/10.1016/j.jnt.2015.08.001

Locations

  • Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The least modulus for which consecutive polynomial values are distinct 2013 Zhi‐Wei Sun
+ Prime divisors of polynomials at consecutive integers. 1980 Jan Turk
+ PDF Chat Number of prime divisors in a product of consecutive integers 2004 Shanta Laishram
T. N. Shorey
+ On functions taking only prime values 2013 Zhi‐Wei Sun
+ The number of large prime divisors of consecutive integers 1977 János Galambos
+ The Smallest Number with Divisors a Product of Distinct Primes 1970 K. Lu
+ Consecutive Integers Divisible by a Power of their Largest Prime Factor. 2018 Jean-Marie De Koninck
Matthieu Moineau
+ PDF Chat Estimating the greatest common divisor of the value of two polynomials 2018 Péter E. Frenkel
Gergely Zábrádi
+ How often is d(n) a power of a given integer? 2021 Titus Hilberdink
+ The greatest common divisor of k positive integers 2018 Rafael Jakimczuk
+ PDF Chat The sum of digits of polynomial values in arithmetic progressions 2012 Thomas Stoll
+ The sum of digits of polynomial values in arithmetic progressions 2011 Thomas Stoll
+ The sum of digits of polynomial values in arithmetic progressions 2011 Thomas Stoll
+ An algorithm to determine all odd primitive abundant numbers with d prime divisors 2018 Jacob Liddy
+ PDF Chat The difference of consecutive primes 1940 P. Erdős
+ Multivariate Polynomial Values in Difference Sets 2020 John R. Doyle
Alex Rice
+ PDF Chat The equation $\omega(n)=\omega(n+1)$ 2011 Jan‐Christoph Schlage‐Puchta
+ Prime facto rs of consecutive integers. 1976 Matti Jutila
+ PDF Chat The greatest prime factor of $a^n - b^n$ 1975 C. L. Stewart
+ Multivariate Polynomial Values in Difference Sets. 2020 John R. Doyle
Alex Rice

Works That Cite This (0)

Action Title Year Authors