Positive Sparse Domination of Variational Carleson Operators

Type: Article

Publication Date: 2018-07-09

Citations: 20

DOI: https://doi.org/10.2422/2036-2145.201612_009

Abstract

Due to its nonlocal nature, the $r$-variation norm Carleson operator $C_r$ does not yield to the sparse domination techniques of Lerner, Di Plinio and Lerner, Lacey. We overcome this difficulty and prove that the dual form to $C_r$ can be dominated by a positive sparse form involving $L^p$ averages. Our result strengthens the $L^p$ estimates by Oberlin et. al. As a corollary, we obtain quantitative weighted norm inequalities improving on previous results by Do and Lacey. Our proof relies on the localized outer $L^p$-embeddings of Di Plinio-Ou and Uraltsev.

Locations

  • ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Positive sparse domination of variational Carleson operators 2016 Francesco Di Plinio
Yen Q.
Gennady Uraltsev
+ Positive sparse domination of variational Carleson operators 2016 Francesco Di Plinio
Yen Do
Gennady Uraltsev
+ Sparse domination of uncentered variational operators 2016 Fernanda Clara de França Silva
Pavel Zorin‐Kranich
+ On pointwise $\ell^r$-sparse domination in a space of homogeneous type 2019 Emiel Lorist
+ PDF Chat On Pointwise $$\ell ^r$$-Sparse Domination in a Space of Homogeneous Type 2020 Emiel Lorist
+ Convex body domination and weighted estimates with matrix weights 2017 FĂ«dor Nazarov
Stefanie Petermichl
Sergei Treil
Alexander Volberg
+ Convex body domination and weighted estimates with matrix weights 2017 FĂ«dor Nazarov
Stefanie Petermichl
Sergei Treil
Alexander Volberg
+ Pointwise Domination and Weak $$L^1$$ Boundedness of Littlewood-Paley Operators via Sparse Operators 2024 Mahdi Hormozi
+ PDF Chat An introduction to pointwise sparse domination 2024 Rodrigo Duarte
+ PDF Chat Convex body domination and weighted estimates with matrix weights 2017 FĂ«dor Nazarov
Stefanie Petermichl
Sergei Treil
Alexander Volberg
+ PDF Chat A sparse approach to mixed weak type inequalities 2019 Marcela Caldarelli
Israel P. Rivera-Rı́os
+ Convex body domination for a class of multi-scale operators 2023 Aapo Laukkarinen
+ Operator-free sparse domination 2021 Andrei K. Lerner
Emiel Lorist
Sheldy Ombrosi
+ Operator-free sparse domination 2021 Andrei K. Lerner
Emiel Lorist
Sheldy Ombrosi
+ Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers 2010 Xuan Thinh Duong
Adam Sikora
Lixin Yan
+ Causal sparse domination of Beurling maximal regularity operators 2021 Tuomas Hytönen
Andreas Rosén
+ A sparse approach to mixed weak type inequalities 2018 Marcela Caldarelli
Israel P. Rivera-Rı́os
+ A sparse approach to mixed weak type inequalities 2018 Marcela Caldarelli
Israel P. Rivera-Rı́os
+ Weak and strong type $A_1$-$A_\infty$ estimates for sparsely dominated operators 2017 Dorothee Frey
Bas Nieraeth
+ Sharp weighted estimates for strong-sparse operators 2021 Gevorg Mnatsakanyan