Trilinear compensated compactness and Burnett's conjecture in general relativity

Type: Article

Publication Date: 2024-04-02

Citations: 5

DOI: https://doi.org/10.24033/asens.2577

Abstract

Consider a sequence of C 4 Lorentzian metrics {hn} +∞ n=1 on a manifold M satisfying the Einstein vacuum equation Ric(hn) = 0. Suppose there exists a smooth Lorentzian metric h 0 on M such that hn → h 0 uniformly on compact sets. Assume also that on any compact set K ⊂ M, there is a decreasing sequence of positive numbers λn → 0 such that ∂ α (hn − h 0) L ∞ (K) λ 1−|α| n , |α| ≥ 4. It is well-known that h 0 , which represents a high-frequency limit, is not necessarily a solution to the Einstein vacuum equation. Nevertheless, Burnett conjectured that h 0 must be isometric to a solution to the Einstein-massless Vlasov system. In this paper, we prove Burnett's conjecture assuming that {hn} +∞ n=1 and h 0 in addition admit a U(1) symmetry and obey an elliptic gauge condition. The proof uses microlocal defect measures-we identify an appropriately defined microlocal defect measure to be the Vlasov measure of the limit spacetime. In order to show that this measure indeed obeys the Vlasov equation, we need some special cancellations which rely on the precise structure of the Einstein equations. These cancellations are related to a new trilinear compensated compactness phenomenon for solutions to (semilinear) elliptic and (quasilinear) hyperbolic equations.

Locations

  • Annales Scientifiques de l École Normale Supérieure - View
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ Trilinear compensated compactness and Burnett's conjecture in general relativity 2019 Cécile Huneau
Jonathan Luk
+ PDF Chat Burnett's conjecture in generalized wave coordinates 2024 Cécile Huneau
Jonathan Luk
+ The Thin-Sandwich Problem in General Relativity 2020 Rodrigo Ávalos
+ PDF Chat Compensated compactness and corrector stress tensor for the Einstein equations in $\mathbb T^2$ symmetry 2020 Bruno Le Floch
Philippe G. LeFloch
+ Mathematical and Angelic Astronomy 1980 A. G. Molland
+ Ricci defects of microlocalized Einstein metrics 2001 Sergiù Klainerman
Igor Rodnianski
+ PDF Chat The bounded L2 curvature conjecture 2015 Jérémie Szeftel
+ The Bounded L2 Curvature Conjecture 2012 Sergiù Klainerman
Igor Rodnianski
Jérémie Szeftel
+ PDF Chat RICCI DEFECTS OF MICROLOCALIZED EINSTEIN METRICS 2004 Sergiù Klainerman
Igor Rodnianski
+ A Weyl law for black holes 2024 José Luis Jaramillo
Rodrigo Panosso Macedo
Oscar Meneses-Rojas
Bernard Raffaelli
Lamis Al Sheikh
+ PDF Chat High-frequency solutions to the Einstein equations 2024 Cécile Huneau
Jonathan Luk
+ Hyperbolic Conservation Laws and Spacetimes with Limited Regularity 2008 Philippe G. LeFloch
+ Transport optimal : régularité et applications 2012 Thomas Gallouët
+ Cut-and-paste for impulsive gravitational waves with $Λ$: The mathematical analysis 2023 Clemens Sämann
Benedict Schinnerl
Roland Steinbauer
Robert Švarc
+ Jérémie Szeftel The resolution of the bounded L2 curvature conjecture in General Relativity (Part 3) 2014 Jérémie Szeftel
Fanny Bastien
+ Einstein's equation and geometric asymptotics 1998 Naresh Dadhich
J. Narliker
Helmut Friedrich
+ PDF Chat High-frequency solutions to the Einstein equations 2024 Cécile Huneau
Jonathan Luk
+ Jérémie Szeftel - The resolution of the bounded L2 curvature conjecture in General Relativity (Part 4) 2014 Jérémie Szeftel
Fanny Bastien
+ Review: The Mathematical Theory of Gravitational Discontinuity Hypersurfaces 2002 Gianluca Gemelli
+ Regularity and compactness of harmonic-Einstein equations 2017 Huabin Ge
Wenshuai Jiang