Schrödinger operators with slowly decaying Wigner–von Neumann type potentials

Type: Article

Publication Date: 2013-03-16

Citations: 21

DOI: https://doi.org/10.4171/jst/41

Abstract

We consider Schrödinger operators with potentials satisfying a generalized bounded variation condition at infinity and an L^p decay condition. This class of potentials includes slowly decaying Wigner–von Neumann type potentials \sin(ax)/x^b with b>0 . We prove absence of singular continuous spectrum and show that embedded eigenvalues in the continuous spectrum can only take values from an explicit finite set. Conversely, we construct examples where such embedded eigenvalues are present, with exact asymptotics for the corresponding eigensolutions.

Locations

  • Journal of Spectral Theory - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Slowly decaying Wigner--von Neumann type potentials 2012 Milivoje Lukić
+ Schrodinger operators with slowly decaying Wigner--von Neumann type potentials 2012 Milivoje Lukić
+ Schrodinger operators with slowly decaying Wigner--von Neumann type potentials 2012 Milivoje Lukić
+ PDF Chat Schrödinger type operators with unbounded diffusion and potential terms 2016 Anna Canale
Abdelaziz Rhandi
Cristian Tacelli
+ Zeroes of the spectral density of the Schroedinger operator with the slowly decaying Wigner-von Neumann potential 2016 Sergey Simonov
+ PDF Chat Improved Eigenvalue Bounds for Schrödinger Operators with Slowly Decaying Potentials 2019 Jean‐Claude Cuenin
+ Wigner-von Neumann type perturbations of periodic Schr\"odinger Operators 2013 Milivoje Lukić
Darren C. Ong
+ Zeroes of the spectral density of the Schroedinger operator with the slowly decaying Wigner-von Neumann potential 2016 Sergey V. Simonov
+ Discrete Schrödinger operators with decaying and oscillating potentials 2021 Rupert L. Frank
Simon Larson
+ Wigner-von Neumann type perturbations of periodic Schrödinger Operators 2013 Milivoje Lukić
Darren C. Ong
+ Wigner-von Neumann type perturbations of periodic Schrödinger operators 2014 Milivoje Lukić
Darren C. Ong
+ PDF Chat Perturbations of the Wigner-Von Neumann Potential Leaving the Embedded Eigenvalue Fixed 2002 Jaime Cruz-Sampedro
Ira Herbst
Rubén A. Martı́nez-Avendaño
+ PDF Chat Potentials for non-local Schrödinger operators with zero eigenvalues 2022 Giacomo Ascione
József Lőrinczi
+ PDF Chat Schrödinger Operators with Few Bound States 2005 David Damanik
Rowan Killip
Barry Simon
+ Spectral properties of the Schr�dinger operator with a potential having a slow falloff 1983 D. R. Yafaev
+ PDF Chat Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators 2017 Matthias Täufer
Martin Tautenhahn
+ Results in the spectral theory of Schrödinger operators with wide potential barriers 1994 Günter Stolz
+ On Schrödinger and Dirac Operators with an Oscillating Potential 2019 Thierry Jecko
+ PDF Chat SINGULAR SCHRÖDINGER OPERATORS IN ONE DIMENSION 2012 E. B. Davies
+ PDF Chat Discrete and Embedded Eigenvalues for One-Dimensional Schrödinger Operators 2007 Christian Remling