Complete gradient shrinking Ricci solitons have finite topological type

Type: Article

Publication Date: 2008-04-29

Citations: 38

DOI: https://doi.org/10.1016/j.crma.2008.03.021

Abstract

We show that a complete Riemannian manifold has finite topological type (i.e., homeomorphic to the interior of a compact manifold with boundary), provided its Bakry–Émery Ricci tensor has a positive lower bound, and either of the following conditions: (i) the Ricci curvature is bounded from above; (ii) the Ricci curvature is bounded from below and injectivity radius is bounded away from zero. Moreover, a complete shrinking Ricci soliton has finite topological type if its scalar curvature is bounded. To cite this article: F.-q. Fang et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). Dans cette Note nous montrons qu'une variété riemanienne complète est de type topologique fini – c'est-à-dire qu'elle est homéomorphe à une variété compacte à bord – si son tenseur de Bakry–Emery–Ricci est bornée inférieurement par une constante positive et vérifie l'une des conditions suivantes : (i) la courbure de Ricci est bornée supérieurement. (ii) la courbure de Ricci est bornée inférieurement et le rayon d'injectivité est positif. De plus, un soliton de Ricci contractant complet est de type topologique fini si sa coubure scalaire est bornée. Pour citer cet article : F.-q. Fang et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).

Locations

  • Comptes Rendus Mathématique - View - PDF
  • arXiv (Cornell University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF

Similar Works

Action Title Year Authors
+ Complete gradient shrinking Ricci solitons have finite topological type 2008 Fuquan Fang
Jian-wen Man
Zhenlei Zhang
+ Complete Shrinking Ricci Solitons have Finite Fundamental Group 2007 William Wylie
+ PDF Chat Complete shrinking Ricci solitons have finite fundamental group 2007 William Wylie
+ PDF Chat Complete gradient shrinking Ricci solitons with pinched curvature 2012 Giovanni Catino
+ PDF Chat Four-dimensional complete gradient shrinking Ricci solitons 2021 Huai-Dong Cao
Ernani Ribeiro
Detang Zhou
+ Rigidity of four-dimenesional Gradient shrinking Ricci solitons 2021 Xu Cheng
Detang Zhou
+ Complete gradient shrinking Ricci solitons with pinched curvature 2011 Giovanni Catino
+ Complete gradient shrinking Ricci solitons with pinched curvature 2011 Giovanni Catino
+ The volume growth of complete gradient shrinking Ricci solitons 2009 Ovidiu Munteanu
+ PDF Chat Four-Dimensional Gradient Shrinking Solitons with Positive Isotropic Curvature 2016 Xiaolong Li
Lei Ni
Kui Wang
+ PDF Chat $${\epsilon}$$ ϵ -regularity for shrinking Ricci solitons and Ricci flows 2017 Huabin Ge
Wenshuai Jiang
+ PDF Chat Uniqueness of asymptotic cones of complete noncompact shrinking gradient Ricci solitons with Ricci curvature decay 2015 Bennett Chow
Peng Lü
+ PDF Chat Curvature estimates for four-dimensional complete gradient expanding Ricci solitons 2021 Huai-Dong Cao
Tianbo Liu
+ PDF Chat ε-Regularity and Structure of Four-dimensional Shrinking Ricci Solitons 2018 Shaosai Huang
+ A gap theorem on complete shrinking gradient Ricci solitons 2017 Shijin Zhang
+ A gap theorem on complete shrinking gradient Ricci solitons 2019 Shijin Zhang
+ Shrinking Ricci solitons with positive isotropic curvature 2019 Keaton Naff
+ PDF Chat Steady gradient Ricci solitons with nonnegative curvature operator away from a compact set 2024 Ziyi Zhao
Xiaohua Zhu
+ Four-dimensional complete gradient shrinking Ricci solitons with half positive isotropic curvature 2022 Huai-Dong Cao
Junming Xie
+ Geometry of Complete Gradient Shrinking Ricci Solitons 2009 Huai-Dong Cao