Less-Forgetful Learning for Domain Expansion in Deep Neural Networks

Type: Article

Publication Date: 2018-04-29

Citations: 69

DOI: https://doi.org/10.1609/aaai.v32i1.11769

Abstract

Expanding the domain that deep neural network has already learned without accessing old domain data is a challenging task because deep neural networks forget previously learned information when learning new data from a new domain. In this paper, we propose a less-forgetful learning method for the domain expansion scenario. While existing domain adaptation techniques solely focused on adapting to new domains, the proposed technique focuses on working well with both old and new domains without needing to know whether the input is from the old or new domain. First, we present two naive approaches which will be problematic, then we provide a new method using two proposed properties for less-forgetful learning. Finally, we prove the effectiveness of our method through experiments on image classification tasks. All datasets used in the paper, will be released on our website for someone's follow-up study.

Locations

  • Proceedings of the AAAI Conference on Artificial Intelligence - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Less-forgetful Learning for Domain Expansion in Deep Neural Networks 2017 Heechul Jung
Jeongwoo Ju
Minju Jung
Junmo Kim
+ PDF Chat Incremental Open-set Domain Adaptation 2024 Sayan Rakshit
Hmrishav Bandyopadhyay
Nibaran Das
Biplab Banerjee
+ DEJA VU: Continual Model Generalization For Unseen Domains 2023 Chenxi Liu
Lixu Wang
Lingjuan Lyu
Chen Sun
Xiao Wang
Qi Zhu
+ PDF Chat Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning 2023 Wonguk Cho
Jinha Park
Taesup Kim
+ Complementary Domain Adaptation and Generalization for Unsupervised Continual Domain Shift Learning 2023 Wonguk Cho
Jinha Park
Taesup Kim
+ PDF Chat More is Better: Deep Domain Adaptation with Multiple Sources 2024 Sicheng Zhao
Hui Chen
Huang Hu
Pengfei Xu
Guiguang Ding
+ PDF Chat More is Better: Deep Domain Adaptation with Multiple Sources 2024 Sicheng Zhao
Hui Chen
Huang Hu
Pengfei Xu
Guiguang Ding
+ On Generalizing Beyond Domains in Cross-Domain Continual Learning 2022 Christian Simon
Masoud Faraki
Yi–Hsuan Tsai
Xiang Yu
Samuel Schulter
Yumin Suh
Mehrtash Harandi
Manmohan Chandraker
+ Multi-source Domain Adaptation in the Deep Learning Era: A Systematic Survey 2020 Sicheng Zhao
Bo Li
Colorado Reed
Pengfei Xu
Kurt Keutzer
+ PDF Chat On Generalizing Beyond Domains in Cross-Domain Continual Learning 2022 Christian Simon
Masoud Faraki
Yi–Hsuan Tsai
Yu Xiang
Samuel Schulter
Yumin Suh
Mehrtash Harandi
Manmohan Chandraker
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
+ Gradient Regularized Contrastive Learning for Continual Domain Adaptation 2021 Peng Su
Shixiang Tang
Peng Gao
Di Qiu
Ni Zhao
Xiaogang Wang
+ PDF Chat Gradient Regularized Contrastive Learning for Continual Domain Adaptation 2021 Shixiang Tang
Peng Su
Dapeng Chen
Wanli Ouyang
+ PDF Chat Gradient Regularized Contrastive Learning for Continual Domain Adaptation 2020 Peng Su
Shixiang Tang
Peng Gao
Di Qiu
Ni Zhao
Xiaogang Wang
+ Gradient Regularized Contrastive Learning for Continual Domain Adaptation 2020 Peng Su
Shixiang Tang
Peng Gao
Di Qiu
Ni Zhao
Xiaogang Wang
+ Continual Domain Adaptation through Pruning-aided Domain-specific Weight Modulation 2023 B Prasanna
Sunandini Sanyal
R. Venkatesh Babu
+ PDF Chat A Survey of Unsupervised Deep Domain Adaptation 2020 Garrett Wilson
Diane J. Cook
+ A Survey of Unsupervised Deep Domain Adaptation 2018 Garrett Wilson
Diane J. Cook
+ A Survey of Unsupervised Deep Domain Adaptation 2018 Garrett Wilson
Diane J. Cook

Works That Cite This (35)

Action Title Year Authors
+ HC-Net: Memory-based Incremental Dual-Network System for Continual learning 2018 Jangho Kim
Jeesoo Kim
Nojun Kwak
+ PDF Chat Online continual learning in image classification: An empirical survey 2021 Zheda Mai
Ruiwen Li
Jihwan Jeong
David Quispe
Hyunwoo Kim
Scott Sanner
+ PDF Chat RTRA: Rapid Training of Regularization-based Approaches in Continual Learning 2023 Sahil Nokhwal
Nirman Kumar
+ PDF Chat FDCNet: Feature Drift Compensation Network for Class-Incremental Weakly Supervised Object Localization 2023 Sejin Park
Tae‐Hyung Lee
Yeejin Lee
Byeongkeun Kang
+ PDF Chat Continual Learning by Asymmetric Loss Approximation With Single-Side Overestimation 2019 Dong-Min Park
Seokil Hong
Bohyung Han
Kyoung Mu Lee
+ Incremental Learning with Unlabeled Data in the Wild 2019 Kibok Lee
Kimin Lee
Jinwoo Shin
Honglak Lee
+ Continual Learning by Asymmetric Loss Approximation with Single-Side Overestimation 2019 Dong-Min Park
Seokil Hong
Bohyung Han
Kyoung Mu Lee
+ PDF Chat Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks 2022 Seungbum Hong
Ji‐Hun Yoon
Min-Kook Choi
Junmo Kim
+ PDF Chat Generative Feature Replay For Class-Incremental Learning 2020 Xialei Liu
Chenshen Wu
Mikel Menta
Luis Herranz
Bogdan Raducanu
Andrew D. Bagdanov
Shangling Jui
Joost van de Weijer
+ Generative Feature Replay For Class-Incremental Learning 2020 Xialei Liu
Chenshen Wu
Mikel Menta
Luis Herranz
Bogdan Raducanu
Andrew D. Bagdanov
Shangling Jui
Joost van de Weijer

Works Cited by This (12)

Action Title Year Authors
+ PDF Chat Domain-Adversarial Training of Neural Networks 2017 Yaroslav Ganin
Evgeniya Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
Mario Marchand
Victor Lempitsky
+ Unsupervised Domain Adaptation by Backpropagation 2014 Yaroslav Ganin
Victor Lempitsky
+ Improving neural networks by preventing co-adaptation of feature detectors 2012 Geoffrey E. Hinton
Nitish Srivastava
Alex Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
+ PDF Chat Going deeper with convolutions 2015 Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
+ PDF Chat ImageNet Large Scale Visual Recognition Challenge 2015 Olga Russakovsky
Jia Deng
Hao Su
Jonathan Krause
Sanjeev Satheesh
Sean Ma
Zhiheng Huang
Andrej Karpathy
Aditya Khosla
Michael S. Bernstein
+ PDF Chat Speech recognition with deep recurrent neural networks 2013 Alex Graves
Abdelrahman Mohamed
Geoffrey E. Hinton
+ Learning Transferable Features with Deep Adaptation Networks 2015 Mingsheng Long
Yue Cao
Jianmin Wang
Michael I. Jordan
+ Overcoming catastrophic forgetting in neural networks 2017 James Kirkpatrick
Razvan Pascanu
Neil C. Rabinowitz
Joel Veness
Guillaume Desjardins
Andrei A. Rusu
Kieran Milan
John Quan
Tiago Ramalho
Agnieszka Grabska‐Barwińska
+ Caffe: Convolutional Architecture for Fast Feature Embedding 2014 Yangqing Jia
Evan Shelhamer
Jeff Donahue
Sergey Karayev
Jonathan Long
Ross Girshick
Sergio Guadarrama
Trevor Darrell
+ Continual Learning with Deep Generative Replay 2017 Hanul Shin
Jung Kwon Lee
Jaehong Kim
Jiwon Kim