Mutations of puzzles and equivariant cohomology of two-step flag varieties

Type: Article

Publication Date: 2015-04-15

Citations: 20

DOI: https://doi.org/10.4007/annals.2015.182.1.4

Abstract

We introduce a mutation algorithm for puzzles that is a three-direction analogue of the classical jeu de taquin algorithm for semistandard tableaux.We apply this algorithm to prove our conjectured puzzle formula for the equivariant Schubert structure constants of two-step flag varieties.This formula gives an expression for the structure constants that is positive in the sense of Graham.Thanks to the equivariant version of the 'quantum equals classical' result, our formula specializes to a Littlewood-Richardson rule for the equivariant quantum cohomology of Grassmannians.

Locations

  • arXiv (Cornell University) - View - PDF
  • Annals of Mathematics - View - PDF

Similar Works

Action Title Year Authors
+ Mutations of puzzles and equivariant cohomology of two-step flag varieties 2014 Anders Skovsted Buch
+ Mutations of puzzles and equivariant cohomology of two-step flag varieties 2014 Anders Skovsted Buch
+ PDF Chat The puzzle conjecture for the cohomology of two-step flag manifolds 2016 Anders Skovsted Buch
Andrew Kresch
Kevin Purbhoo
Harry Tamvakis
+ The puzzle conjecture for the cohomology of two-step flag manifolds 2014 Anders Skovsted Buch
Andrew Kresch
Kevin Purbhoo
Harry Tamvakis
+ The puzzle conjecture for the cohomology of two-step flag manifolds 2014 Anders Skovsted Buch
Andrew Kresch
Kevin Purbhoo
Harry Tamvakis
+ Equivariant quantum Schubert polynomials 2014 Dave Anderson
Linda Chen
+ Equivariant quantum Schubert polynomials 2011 Dave Anderson
Linda Chen
+ Puzzles and (equivariant) cohomology of Grassmannians 2001 Allen Knutson
Terence Tao
+ A rim-hook rule for quiver flag varieties 2020 Kalashnikov Elana Grace
Gu Wei
+ PDF Chat An equivariant rim hook rule for quantum cohomology of Grassmannians 2014 Elizabeth Beazley
Anna Bertiger
Kaisa Taipale
+ Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 2018 Iva Halacheva
Allen Knutson
Paul Zinn-Justin
+ Restricting Schubert classes to symplectic Grassmannians using self-dual puzzles 2019 Iva Halacheva
Allen Knutson
Paul Zinn-Justin
+ Schubert puzzles and integrability II: multiplying motivic Segre classes 2021 Allen Knutson
Paul Zinn-Justin
+ PDF Chat A Pl\"ucker coordinate mirror for partial flag varieties and quantum Schubert calculus 2024 Changzheng Li
Konstanze Rietsch
Mingzhi Yang
Chi Zhang
+ PDF Chat Equivariant quantum cohomology of the Grassmannian via the rim hook rule 2018 Anna Bertiger
Elizabeth Milićević
Kaisa Taipale
+ PDF Chat Monodromy and K-theory of Schubert curves via generalized jeu de taquin 2016 Maria Gillespie
Jake Levinson
+ Schubert puzzles and integrability II: multiplying motivic Segre classes 2021 Allen Knutson
Paul Zinn-Justin
+ Equivariant cohomology, Schubert calculus, and edge labeled tableaux 2019 Colleen Robichaux
Harshit Yadav
Alexander Yong
+ PDF Chat Equivariant Cohomology, Schubert Calculus, and Edge Labeled Tableaux 2022 Colleen Robichaux
Harshit Yadav
Alexander Yong
+ PDF Chat Puzzles and (equivariant) cohomology of Grassmannians 2003 Allen Knutson
Terence Tao