On the dimension of Bernoulli convolutions

Type: Article

Publication Date: 2019-07-01

Citations: 13

DOI: https://doi.org/10.1214/18-aop1324

Abstract

The Bernoulli convolution with parameter $\lambda\in(0,1)$ is the probability measure $\mu_\lambda$ that is the law of the random variable $\sum_{n\ge0}\pm\lambda^n$, where the signs are independent unbiased coin tosses. We prove that each parameter $\lambda\in(1/2,1)$ with $\dim\mu_\lambda<1$ can be approximated by algebraic parameters $\xi\in(1/2,1)$ within an error of order $\exp(-deg(\xi)^{A})$ for any number $A$, such that $\dim\mu_\xi<1$. As a corollary, we conclude that $\dim\mu_\lambda=1$ for each of $\lambda=\ln 2, e^{-1/2}, \pi/4$. These are the first explicit examples of such transcendental parameters. Moreover, we show that Lehmer's conjecture implies the existence of a constant $a<1$ such that $\dim\mu_\lambda=1$ for all $\lambda\in(a,1)$.

Locations

  • The Annals of Probability - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Apollo (University of Cambridge) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ On the dimension of Bernoulli convolutions 2016 Emmanuel Breuillard
Péter P. Varjú
+ On the dimension of Bernoulli convolutions for all transcendental parameters 2018 Péter P. Varjú
+ PDF Chat On the dimension of Bernoulli convolutions for all transcendental parameters 2019 Péter P. Varjú
+ A dimension formula for Bernoulli convolutions 1994 François Ledrappier
Anna Porzio
+ A Convolution Formula For Bernoulli Polynomials. 2013 Yuan He
Wenpeng Zhang
+ PDF Chat Arithmetic Properties of Bernoulli Convolutions 1962 Adriano M. Garsia
+ Recent progress on Bernoulli convolutions 2018 Péter P. Varjú
+ Recent progress on Bernoulli convolutions 2016 Péter P. Varjú
+ The Bernoulli numbers : a brief primer 2019 Nathaniel Larson
+ PDF Chat Recent progress on Bernoulli convolutions 2018 Péter P. Varjú
+ PDF Chat A Lower Bound for the Dimension of Bernoulli Convolutions 2017 Kevin G. Hare
Nikita Sidorov
+ PDF Chat Some connections between Bernoulli convolutions and analytic number theory 2004 Titus Hilberdink
+ Sixty Years of Bernoulli Convolutions 2000 Yuval Peres
Wilhelm Schlag
Boris Solomyak
+ Absolute continuity of Bernoulli convolutions for algebraic parameters 2018 Péter P. Varjú
+ PDF Chat Hankel determinants and Bernoulli numbers 1954 L. Carlitz
+ An Explicit Formula for Bernoulli Numbers 1989 Kazunori Horata
+ A Note on the Spectrality of Moran-Type Bernoulli Convolutions by Deng and Li 2024 Yong-Shen Cao
Qi-Rong Deng
Ming‐Tian Li
Sha Wu
+ Bernoulli Polynomials and Bernoulli Numbers 1973 Hans Rademacher
+ Determinantal Expressions for Bernoulli Polynomials. 2019 Takashi Agoh
+ On Bernoulli convolutions 1984 Robert Kaufman