A note on Maass forms of icosahedral type

Type: Article

Publication Date: 2018-10-24

Citations: 0

DOI: https://doi.org/10.1007/s00209-018-2157-3

Abstract

Using ideas of Ramakrishnan, we consider the icosahedral analogue of the theorems of Sarnak and Brumley on Hecke–Maass newforms with Fourier coefficients in a quadratic order. Although we are unable to conclude the existence of an associated Galois representation in this case, we show that one can deduce some implications of such an association, including weak automorphy of all symmetric powers and the value distribution of Fourier coefficients predicted by the Chebotarev density theorem.

Locations

  • Mathematische Zeitschrift - View - PDF

Similar Works

Action Title Year Authors
+ A note on Maass forms of icosahedral type 2017 Andrew R. Booker
+ A note on Maass forms of icosahedral type 2017 Andrew R. Booker
+ The Bombieri–Vinogradov Theorem on Higher Rank Groups and its Applications 2019 Yujiao Jiang
Guangshi Lü
+ Harmonic Maass forms associated with CM newforms 2022 Stephan Ehlen
Yingkun Li
Markus Schwagenscheidt
+ PDF Chat ARCHIMEDEAN NEWFORM THEORY FOR 2024 Peter Humphries
+ Asymptotic densities of Maass newforms 2004 Morten S. Risager
+ Harmonic Maass forms associated with CM newforms 2024 Stephan Ehlen
Yingkun Li
Markus Schwagenscheidt
+ Quantum Maass Forms 2006 Richard Bruggeman
+ A GL(3) Kuznetsov Trace Formula and the Distribution of Fourier Coefficients of Maass Forms 2016 João Guerreiro
+ PDF Chat Kloosterman identities over a quadratic extension 2004 Hervé Jacquet
+ A converse theorem for Jacobi–Maass forms and applications & Asymptoticdistribution of Hecke points over C p and applications 2016 Sebastián Herrero
+ Kloosterman sums and Maass forms 2003 Roger C. Baker
+ Asymptotic densities of newforms 2002 Morten S. Risager
+ The Newform $K$-Type and $p$-adic Spherical Harmonics 2020 Peter Humphries
+ Universal deformations of even Galois representations and relations to Maass wave forms 1995 Gebhard Böckle
+ HECKE-SIEGEL TYPE THRESHOLD FOR SQUARE-FREE FOURIER COEFFICIENTS : AN IMPROVEMENT (Analytic and Arithmetic Theory of Automorphic Forms) 2019 Pramath Anamby
Soumya Das
+ Coefficients of Maass Forms and the Siegel Zero 1994 Jeffrey Hoffstein
Paul Lockhart
+ Sum of the Fourier coefficients of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>S</mml:mi><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mn>3</mml:mn><mml:mo>,</mml:mo><mml:mi mathvariant="double-struck">Z</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> Hecke Maass forms over quadratics 2023 Himanshi Chanana
Saurabh Kumar Singh
+ BOMBIERI–VINOGRADOV THEOREMS FOR MODULAR FORMS AND APPLICATIONS 2019 Peng‐Jie Wong
+ Power series expansions of modular forms and $p$-adic interpolation of the square roots of Rankin-Selberg special values 2019 Andrea Mori

Works That Cite This (0)

Action Title Year Authors