Extremal G-free induced subgraphs of Kneser graphs

Type: Article

Publication Date: 2018-06-22

Citations: 5

DOI: https://doi.org/10.1016/j.jcta.2018.06.010

Locations

  • Journal of Combinatorial Theory Series A - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Extremal $G$-free induced subgraphs of Kneser graphs 2018 Meysam Alishahi
Ali Taherkhani
+ Extremal $G$-free induced subgraphs of Kneser graphs 2018 Meysam Alishahi
Ali Taherkhani
+ PDF Chat Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem 2014 Daniel J. Harvey
David R. Wood
+ Treewidth of the Kneser Graph and the Erdős-Ko-Rado Theorem 2013 Daniel J. Harvey
David R. Wood
+ Minimum Clique-Free Subgraphs of Kneser Graphs 2020 S. V. Vahrushev
Maksim Zhukovskii
Sergei Kiselev
Arkadiy Skorkin
+ Maximal degrees in subgraphs of Kneser graphs 2020 Péter Frankl
Andrey Kupavskii
+ Treewidth of the Kneser Graph and the Erd\H{o}s-Ko-Rado Theorem 2013 Daniel J. Harvey
David R. Wood
+ Kneser Graphs 2001 Chris Godsil
Gordon Royle
+ Treewidth of the Kneser Graph and the 2013 Erdýos-Ko-Rado Theorem
Daniel J. Harveyand
David R. Wood
+ The super-connectivity of Kneser graph KG(n,3) 2021 Yulan Chen
Yuqing Lin
Weigen Yan
+ On the random version of the Erdős matching conjecture 2018 Meysam Alishahi
Ali Taherkhani
+ On the random version of the Erdős matching conjecture 2018 Meysam Alishahi
Ali Taherkhani
+ Treewidth of the generalized Kneser graphs 2020 Ke Liu
Mengyu Cao
Mei Lu
+ PDF Chat Treewidth of the Generalized Kneser Graphs 2022 Ke Liu
Mengyu Cao
Mei Lu
+ On the random version of the Erd\H{o}s matching conjecture 2018 Meysam Alishahi
Ali Taherkhani
+ Maximum bipartite subgraphs of Kneser graphs 1987 Svatopluk Poljak
Źsolt Tuza
+ PDF Chat Clique number of Xor products of Kneser graphs 2022 András Imolay
Anett Kocsis
A. R. Schweitzer
+ A Common Generalization of the Theorems of Erdős-Ko-Rado and Hilton-Milner 2013 W. Li
Bor-Liang Chen
Kuo‐Ching Huang
Ko‐Wei Lih
+ The maximum number of triangles in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e97" altimg="si12.svg"><mml:msub><mml:mrow><mml:mi>F</mml:mi></mml:mrow><mml:mrow><mml:mi>k</mml:mi></mml:mrow></mml:msub></mml:math>-free graphs 2023 Xiutao Zhu
Yaojun Chen
Dániel Gerbner
Ervin Győri
Hilal Hama Karim
+ PDF Chat Graphs with the Erdős–Ko–Rado property 2005 Fred Holroyd
John Talbot