A weak Zassenhaus Lemma for discrete subgroups of Diff(<i>I</i>)

Type: Article

Publication Date: 2014-01-09

Citations: 5

DOI: https://doi.org/10.2140/agt.2014.14.539

Abstract

We prove a weaker version of the Zassenhaus Lemma for subgroups of Diff.I/. We also show that a group with commutator subgroup containing a non-Abelian free subsemigroup does not admit a C0 ‐discrete faithful representation in Diff.I/. 37C05; 20F65

Locations

  • Algebraic & Geometric Topology - View - PDF
  • Project Euclid (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ A weak Zassenhaus lemma for discrete subgroups of Diff(I) 2012 Azer Akhmedov
+ A weak Zassenhaus lemma for discrete subgroups of Diff(I) 2012 Azer Akhmedov
+ PDF Chat On free discrete subgroups of Diff(<i>I</i>) 2010 Azer Akhmedov
+ Finite groups with <i>s</i>σ-quasinormal subgroups 2024 Xuecheng Zhong
Youxin Li
Wei Meng
+ PDF Chat <i>L</i> <sub>9</sub> -free groups 2024 Imke Toborg
Rebecca Waldecker
Clemens B. Tietze
+ Questions and Remarks on Discrete and Dense Subgroups of Diff(I) 2013 Azer Akhmedov
+ Questions and Remarks on Discrete and Dense Subgroups of Diff(I) 2013 Azer Akhmedov
+ Algebras <i>H</i>(<i>D</i>) 2025
+ Algebras <i>H</i>(<i>D</i>) 2025
+ Algebras <i>H</i>(<i>D</i>) 2015
+ PDF Chat <i>C</i><sup>∗</sup>-algebras associated with free products of groups 1979 William L. Paschke
Norberto Salinas
+ Finite <i>p</i>-groups 1997 David L. Johnson
+ Zassenhaus Conjecture for Groups of Order<i>p</i><sup>2</sup><i>q</i> 2008 Jen-Hao Liu
+ <i>Fourier Analysis on Groups</i> 1964 Walter Rudin
L. Bers
R. Courant
J. J. Stoker
Dagmar Renate Henney
+ K-theory for discrete groups 1989 Paul Baum
Alain Connes
+ Finite Groups I 1986 Michio Suzuki
+ Exactness Versus C*-Exactness for Certain Non-discrete Groups 2021 Nicholas Manor
+ K-Groups of Solenoidal Algebras I 1995 Berndt Brenken
+ PDF Chat Questions and remarks on discrete and dense subgroups of Diff(I) 2014 Azer Akhmedov
+ Property (T) and Kazhdan constants for discrete groups 2003 Andrzej Żuk