Measurable circle squaring

Type: Article

Publication Date: 2017-02-06

Citations: 18

DOI: https://doi.org/10.4007/annals.2017.185.2.6

Abstract

Laczkovich proved that if bounded subsets A and B of R k have the same non-zero Lebesgue measure and the upper box dimension of the boundary of each set is less than k, then there is a partition of A into finitely many parts that can be translated to form a partition of B.Here we show that it can be additionally required that each part is both Baire and Lebesgue measurable.As special cases, this gives measurable and translation-only versions of Tarski's circle squaring and Hilbert's third problem.

Locations

  • arXiv (Cornell University) - View - PDF
  • Warwick Research Archive Portal (University of Warwick) - View - PDF
  • Lancaster EPrints (Lancaster University) - View - PDF
  • Annals of Mathematics - View

Similar Works

Action Title Year Authors
+ Measurable circle squaring 2015 Ɓukasz Grabowski
Andrås Måthé
Oleg Pikhurko
+ Measurable circle squaring 2015 Ɓukasz Grabowski
Andrås Måthé
Oleg Pikhurko
+ Circle Squaring with Pieces of Small Boundary and Low Borel Complexity 2022 Andrås Måthé
Jonathan A. Noel
Oleg Pikhurko
+ PDF Chat Borel circle squaring 2017 Andrew Marks
Spencer Unger
+ The Banach–Tarski Paradox 2016 Grzegorz Tomkowicz
Stan Wagon
+ PDF Chat None 2022 Matthieu Fradelizi
Zsolt LÃ¥ngi
Artem Zvavitch
+ A counterpart of the Borel–Cantelli lemma 1980 F. Thomas Bruss
+ A counterpart of the Borel–Cantelli lemma 1980 F. Thomas Bruss
+ Paradoxical decompositions and the Axiom of Choice 2010 Eric Francis Freiling
+ Divisibility of Spheres with Measurable Pieces 2020 Clinton T. Conley
Jan GrebĂ­k
Oleg Pikhurko
+ Andrew Marks and Spencer Unger, Borel circle squaring, Annals of Mathematics, (2017), no. 186, pp. 581–605. 2018 Aleksandra Kwiatkowska
+ The Banach–Tarski Paradox: Duplicating Spheres and Balls 2016 Grzegorz Tomkowicz
Stan Wagon
+ The Banach-Tarski Paradox 2021 Katie Buchhorn
+ The Banach-Tarski Paradox 2021 Katie Buchhorn
+ Divisibility of spheres with measurable pieces 2024 Clinton T. Conley
Jan GrebĂ­k
Oleg Pikhurko
+ PDF Chat Borsuk and Ramsey Type Questions in Euclidean Space 2018 PĂ©ter Frankl
JĂĄnos Pach
Christian Reiher
Vojtěch Rödl
+ The Banach-Tarski Paradox 1985 Stan Wagon
+ A form of the Borel-Cantelli lemma 1985 Nadjib Bouzar
+ PDF Chat Banach-Tarski paradox using pieces with the property of Baire. 1992 Randall Dougherty
M. Foreman
+ PDF Chat None 1995 Joel Hass
Michael Hutchings
Roger Schlafly