Exponential growth of the vorticity gradient for the Euler equation on the torus

Type: Article

Publication Date: 2014-10-16

Citations: 91

DOI: https://doi.org/10.1016/j.aim.2014.08.012

Locations

  • Advances in Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Exponential growth of the vorticity gradient for the Euler equation on the torus 2013 Andrej Zlatoš
+ Exponential growth of the vorticity gradient for the Euler equation on the torus 2013 Andrej Zlatoš
+ Double exponential growth of the vorticity gradient for the two-dimensional Euler equation 2012 Sergey A. Denisov
+ Double exponential growth of the vorticity gradient for the two-dimensional Euler equation 2012 Sergey A. Denisov
+ Strong convergence of the vorticity and conservation of the energy for the $α$-Euler equations 2023 Stefano Abbate
Gianluca Crippa
Stefano Spirito
+ PDF Chat Double exponential growth of the vorticity gradient for the two-dimensional Euler equation 2014 Sergey A. Denisov
+ Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus 2016 Zhen Lei
Jia Shi
+ Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow 2016 Xiaoqian Xu
+ Fast growth of the vorticity gradient in symmetric smooth domains for 2D incompressible ideal flow 2014 Xiaoqian Xu
+ PDF Chat Strong convergence of the vorticity and conservation of the energy for the α-Euler equations 2024 Stefano Abbate
Gianluca Crippa
Stefano Spirito
+ Infinite superlinear growth of the gradient for the two-dimensional Euler equation 2008 Sergey A. Denisov
+ PDF Chat A bound on the mixing rate of 2D perfect fluid flows 2012 D. Wirosoetisno
+ Exponential decay for inhomogeneous viscous flows on the torus 2024 Raphaël Danchin
Shan Wang
+ Construction of High Regularity Invariant Measures for the 2D and 3D Euler Equations and Remarks on the Growth of the Solutions 2020 Mickaël Latocca
+ On the vanishing viscosity limit for 2D incompressible flows with unbounded vorticity 2021 Helena J. Nussenzveig Lopes
Christian Seis
Emil Wiedemann
+ Slow motion for the 1D Swift-Hohenberg equation 2016 Gurgen Hayrapetyan
Matteo Rinaldi
+ Slow motion for the 1D Swift-Hohenberg equation 2016 Gurgen Hayrapetyan
Matteo Rinaldi
+ PDF Chat On Vorticity Gradient Growth for the Axisymmetric 3D Euler Equations Without Swirl 2019 Tam Do
+ Blow up in Axisymmetric Euler Flows 1992 Alain Pumir
Eric D. Siggia
+ On the rate of merging of vorticity level sets for the 2D Euler equations 2016 Andrej Zlatoš