Type: Article
Publication Date: 2014-09-16
Citations: 10
DOI: https://doi.org/10.1142/s0219498815500887
Given a finite field, one can form a directed graph using the field elements as vertices and connecting two vertices if their difference lies in a fixed subgroup of the multiplicative group. If -1 is contained in this fixed subgroup, then we obtain an undirected graph that is referred to as a generalized Paley graph. In this paper, we study generalized Paley graphs whose clique and chromatic numbers coincide and link this theory to the study of the synchronization property in 1-dimensional primitive affine permutation groups.