Permutations of $\mathbb {Z}^d$ with restricted movement

Type: Article

Publication Date: 2016-01-01

Citations: 2

DOI: https://doi.org/10.4064/sm8498-8-2016

Abstract

We investigate dynamical properties of the set of permutations of $\mathbb {Z}^d$ with <i>restricted movement</i>, i.e., permutations $\pi $ of $\mathbb {Z}^d$ such that $\pi (\mathbf {n})-\mathbf {n}$ lies, for every $\mathbf {n}\in \mathbb {Z}^d$, in a

Locations

  • arXiv (Cornell University) - View - PDF
  • Studia Mathematica - View

Similar Works

Action Title Year Authors
+ Permutations of $\mathbb{Z}^d$ with restricted movement 2015 Klaus Schmidt
Gabriel Strasser
+ Permutations of $\mathbb{Z}^d$ with restricted movement 2015 Klaus Schmidt
Gabriel Strasser
+ Master's thesis: Permutations With Restricted Movement 2019 Dor Elimelech
+ Permutations with restricted movement 2020 Dor Elimelech
+ Permutations with restricted movement 2020 Dor Elimelech
+ PDF Chat Permutations with restricted movement 2021 Dor Elimelech
+ PDF Chat Time Reversal of Random Walks in $\mathbf{R}^d$ 1990 Hiroshi Tanaka
+ PDF Chat Growth Rates Of Permutations With Given Descent Or Peak Set 2024 M. A. Omar
Justin M. Troyka
+ Branching random walks on $\mathbf{Z}^d$ with periodic branching sources 2019 Mariya V Platonova
K. S. Ryadovkin
+ Asymmetric Random Walks on $$ \mathbb {Z}$$ and Related Topics 2025 Norbert Henze
+ Factor maps and embeddings for random $\mathbb{Z}^d$ shifts of finite type 2017 Kevin McGoff
Ronnie Pavlov
+ Random Walks on the Integer Lattice $$ \mathbb {Z}^d$$ 2025 Norbert Henze
+ Expansion and random walks in $\mathrm {SL}_d(\mathbb {Z}/p^n\mathbb {Z})$: I 2008 Jean Bourgain
Alex Gamburd
+ Random Walks on Comb-Type Subsets of $$\mathbb {Z}^2$$ 2019 Endre Csáki
Antónia Földes
+ Random $\mathbb{Z}^d$-shifts of finite type 2014 Kevin McGoff
Ronnie Pavlov
+ Random $\mathbb{Z}^d$-shifts of finite type 2014 Kevin McGoff
Ronnie Pavlov
+ Cycles and divergent trajectories for a class of permutation sequences 2022 John L Simons
+ The Oscillating Random Walk on $$ {\mathbf {\mathbb {Z}}} $$ 2023 Tran Duy Vo
+ Active Phase for Activated Random Walk on $$\mathbb {Z}$$ 2022 Christopher Hoffman
Jacob Richey
Leonardo T. Rolla
+ Appendix C: Permutations 2013 Saul Stahl
Catherine Stenson

Works Cited by This (0)

Action Title Year Authors