The structure of Sobolev extension operators

Type: Article

Publication Date: 2014-07-08

Citations: 10

DOI: https://doi.org/10.4171/rmi/787

Abstract

Let L^{m,p}(\mathbb{R}^n) denote the Sobolev space of functions whose m -th derivatives lie in L^p(\mathbb{R}^n) , and assume that p>n . For E \subseteq \mathbb{R}^n , denote by L^{m,p}(E) the space of restrictions to E of functions F \in L^{m,p}(\mathbb{R}^n) . It is known that there exist bounded linear maps T \colon L^{m,p}(E) \rightarrow L^{m,p}(\mathbb{R}^n) such that Tf = f on E for any f \in L^{m,p}(E) . We show that T cannot have a simple form called “bounded depth”.

Locations

  • Revista Matemática Iberoamericana - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The Structure of Sobolev Extension Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ The Structure of Sobolev Extension Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ PDF Chat Sobolev extension by linear operators 2013 Charles Fefferman
Arie Israel
Garving K. Luli
+ Sobolev Extension By Linear Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ Sobolev Extension By Linear Operators 2012 Charles Fefferman
Arie Israel
Garving K. Luli
+ Approximate Extension in Sobolev Space 2020 Marjorie Drake
+ PDF Chat The Structure of Linear Extension Operators for $C^m$ 2007 Charles Fefferman
+ Sobolev Spaces 2017 Valery Serov
+ PDF Chat Extension of $C^{m, \omega}$-Smooth Functions by Linear Operators 2009 Charles Fefferman
+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msup><mml:mi>C</mml:mi><mml:mrow><mml:mi>m</mml:mi><mml:mo>,</mml:mo><mml:mi>ω</mml:mi></mml:mrow></mml:msup></mml:math> extension by bounded-depth linear operators 2010 Garving K. Luli
+ An extension operator for orlicz-sobolev spaces 1981 Aparecido J. de Souza
+ PDF Chat NEMYTZKIJ OPERATORS ON SOBOLEV SPACES WITH POWER WEIGHTS: I 2022 Douadi Drihem
+ Sobolev Spaces 2023 Michael E. Taylor
+ Extension criteria for homogeneous Sobolev spaces of functions of one variable 2020 Pavel Shvartsman
+ Sobolev Extension Operator 2024 Sebastian Bechtel
+ Lipschitz spaces generated by the Sobolev-Poincaré inequality and extensions of Sobolev functions 2013 Pavel Shvartsman
+ Sobolev Spaces and Elliptic Theory on Unbounded Domains in $\mathbb R^n$ 2012 Phillip S. Harrington
Andrew Raich
+ Sobolev Spaces and Elliptic Theory on Unbounded Domains in $\mathbb R^n$ 2012 Phillip S. Harrington
Andrew Raich
+ Sobolev functions on closed subsets of the real line: long version. 2018 Pavel Shvartsman
+ PDF Chat Sobolev Versus Homogeneous Sobolev Extension 2024 Pekka Koskela
Riddhi Mishra
Zheng Zhu