Asymptotic estimates on the von Neumann inequality for homogeneous polynomials

Type: Article

Publication Date: 2016-02-20

Citations: 37

DOI: https://doi.org/10.1515/crelle-2015-0097

Abstract

Abstract By the von Neumann inequality for homogeneous polynomials there exists a positive constant <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>C</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> C_{k,q} ( n ) such that for every k -homogeneous polynomial p in n variables and every n -tuple of commuting operators ( <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>T</m:mi> <m:mn>1</m:mn> </m:msub> </m:math> T_{1} ,…, <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> </m:math> T_{n} ) with <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msubsup> <m:mo>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:msubsup> <m:msup> <m:mrow> <m:mo>∥</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>∥</m:mo> </m:mrow> <m:mi>q</m:mi> </m:msup> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {\sum_{i=1}^{n}\|T_{i}\|^{q}\leq 1} we have <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mo>∥</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:msub> <m:mi>T</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi>…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>T</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>∥</m:mo> </m:mrow> <m:mrow> <m:mi>ℒ</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>ℋ</m:mi> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msub> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mi>n</m:mi> <m:mo>)</m:mo> </m:mrow> <m:mo>⁢</m:mo> <m:mrow> <m:mo>sup</m:mo> <m:mo>⁡</m:mo> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mo>|</m:mo> <m:mrow> <m:mi>p</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo>(</m:mo> <m:msub> <m:mi>z</m:mi> <m:mn>1</m:mn> </m:msub> <m:mo>,</m:mo> <m:mi>…</m:mi> <m:mo>,</m:mo> <m:msub> <m:mi>z</m:mi> <m:mi>n</m:mi> </m:msub> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>|</m:mo> </m:mrow> <m:mo>:</m:mo> <m:mrow> <m:mrow> <m:munderover> <m:mo>∑</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mi>n</m:mi> </m:munderover> <m:msup> <m:mrow> <m:mo>|</m:mo> <m:msub> <m:mi>z</m:mi> <m:mi>i</m:mi> </m:msub> <m:mo>|</m:mo> </m:mrow> <m:mi>q</m:mi> </m:msup> </m:mrow> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>}</m:mo> </m:mrow> </m:mrow> </m:mrow> </m:mrow> <m:mo>.</m:mo> </m:mrow> </m:math> \|p(T_{1},\ldots,T_{n})\|_{\mathcal{L}(\mathcal{H})}\leq C_{k,q}(n)\sup\Biggl{% \{}|p(z_{1},\ldots,z_{n})|:\sum_{i=1}^{n}|z_{i}|^{q}\leq 1\Biggr{\}}. For fixed k and q , we study the asymptotic growth of the smallest constant <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>C</m:mi> <m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>q</m:mi> </m:mrow> </m:msub> </m:math> C_{k,q} ( n ) as n (the number of variables/operators) tends to infinity. For q = <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>∞</m:mi> </m:math> \infty , we obtain the correct asymptotic behavior of this constant (answering a question posed by Dixon in the 1970s). For 2 <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mo>≤</m:mo> </m:math> \leq q <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mo>&lt;</m:mo> </m:math> &lt; <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mi>∞</m:mi> </m:math> \infty we improve some lower bounds given by Mantero and Tonge, and prove the asymptotic behavior up to a logarithmic factor. To achieve this we provide estimates of the norm of homogeneous unimodular Steiner polynomials, i.e. polynomials such that the multi-indices corresponding to the nonzero coefficients form partial Steiner systems.

Locations

  • arXiv (Cornell University) - View - PDF
  • Repositorio Institucional de la Universitat Politècnica (Universitat Politècnica de València) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View

Similar Works

Action Title Year Authors
+ Asymptotic estimates on the von Neumann inequality for homogeneous polynomials 2015 Daniel Galicer
Santiago Muro
Pablo Sevilla‐Peris
+ Asymptotic estimates on the von Neumann inequality for homogeneous polynomials 2015 Daniel Galicer
Santiago Muro
Pablo Sevilla‐Peris
+ Some asymptotic estimates on the Von Neumann Inequality for homogeneous polynomials 2019 Oscar Zatarain‐Vera
+ On the Markov inequality in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"><mml:msub><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:math>-norm with the Gegenbauer weight 2016 Dragomir Aleksov
Geno Nikolov
Alexei Shadrin
+ On real-valued homogeneous polynomials with many variables 2023 Anselmo Raposo
Katiuscia Teixeira
+ PDF Chat Von Neumann inequality for $(B(\mathscr{H})^n)_1$. 1991 Gelu Popescu
+ A decay estimate for the eigenvalues of the Neumann-Poincaré operator using the Grunsky coefficients 2019 Younghoon Jung
Mikyoung Lim
+ PDF Chat An easily computable upper bound on the Hoffman constant for homogeneous inequality systems 2023 Javier Peña
+ PDF Chat The 𝐿_{𝑝} version of Newman’s Inequality for lacunary polynomials 1996 Peter Borwein
Tamás Erdélyi
+ The Von Neumann Inequality for Polynomials of Degree Greater Than Two 1976 P. G. Dixon
+ PDF Chat A lower Jackson bound on (-∞,∞) 1970 J. S. Byrnes
Donald J. Newman
+ Werte von $$\frac{m!}{(m-n)!} = m(m-1)(m-2)\dotsm(m-n+1)$$ 1930 Keiichi Hayashi
+ Inequalities between Dirichlet and Neumann eigenvalues of the polyharmonic operators 2019 Luigi Provenzano
+ Inequalities of von Neumann Type for Small Matrices 2020 John Holbrook
+ The norm estimates of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si32.gif" display="inline" overflow="scroll"><mml:mi>q</mml:mi></mml:math>-Bernstein operators for varying <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si33.gif" display="inline" overflow="scroll"><mml:mi>q</mml:mi><mml:mo>&gt;</mml:mo><mml:mn>1</mml:mn></mml:math> 2011 Sofiya Ostrovska
Ahmet Yaşar Özban
+ PDF Chat Spectral properties of orthogonal polynomials on unbounded sets 1982 T. S. Chihara
+ Spectral asymptotics for Krein–Feller operators with respect to 𝑉-variable Cantor measures 2019 Lenon Minorics
+ Inequalities of Chernoff type for finite and infinite sequences of classical orthogonal polynomials 2009 Ryszard Smarzewski
Przemysław Rutka
+ PDF Chat On Von Neumann’s Inequality for Matrices of Complex Polynomials 2021 Joachim Moussounda Mouanda
+ Uniform inequalities for Gegenbauer polynomials 1996 M. Reimer