Computing denumerants in numerical 3-semigroups

Type: Article

Publication Date: 2018-02-08

Citations: 2

DOI: https://doi.org/10.2989/16073606.2017.1419998

Abstract

As far as we know, usual computer algebra packages can not compute denumerants for almost medium (about a hundred digits) or almost medium-large (about a thousand digits) input data in a reasonably time cost on an ordinary computer. Implemented algorithms can manage numerical n-semigroups for small input data.Basically, the denumerant of a non-negative element s ∈ ℕ is the number of non-negative integer solutions of certain linear non-negative Diophantine equation which constant term is equal to s.Here we are interested in denumerants of numerical 3-semigroups which have almost medium input data. A new algorithm for computing denumerants is given for this task. It can manage almost medium input data in the worst case and medium-large or even large input data in some cases.

Locations

  • Quaestiones Mathematicae - View
  • arXiv (Cornell University) - View - PDF
  • UPCommons institutional repository (Universitat Politècnica de Catalunya) - View - PDF

Similar Works

Action Title Year Authors
+ On Hunting for Taxicab Numbers 2008 Pavel Emelyanov
+ ARITHMETICAL STUDY OF DIFFERENT NON-LINEAR DIOPHANTINE EQUATIONS 2021
+ Diophantine equations: a systematic approach 2021 Bogdan Grechuk
+ PDF Chat The Diophantine equation 𝑥⁴+1=𝐷𝑦² 1997 Jonathan Cohn
+ Solution oSolution of Exponential Diophantine Equation n<sup>x</sup> +43<sup>y</sup> = z<sup>2</sup>, where n≡2(mod 129) and n+1 is not a Perfect Square 2024 Sudhanshu Aggarwal
A. T. Shahida
+ PDF Chat ABOUT FINDING OF THE DIOPHANTINE RATIONAL NUMBERS SETS 2022 I. Zinovieiev
N. Manko
Zinovieiev Y.-D.
+ PDF Chat On the computational complexity of determining the solvability or unsolvability of the equation 𝑋²-𝐷𝑌²=-1 1980 Jeffrey C. Lagarias
+ Théorie algorithmique des nombres et équations diophantiennes. Préface des éditeurs 2024 Nicole Berline
Alain Plagne
Claude Sabbah
+ Seminumerical algorithm (arithmetic) 1969 Donald E. Knuth
+ The Diophantine equation $(x+1)^k+(x+2)^k+\cdots+(\ell x)^k=y^n$ revisited 2020 Daniele Bartoli
Gökhan Soydan
+ A Type of Multiplicative Diophantine System 1933 Morgan Ward
+ PDF Chat On searching for solutions of the Diophantine equation 𝑥³+𝑦³+𝑧³=𝑛 1997 Kenji Koyama
Yukio Tsuruoka
Hiroshi Sekigawa
+ Einführung: Die algebraische Struktur der natürlichen Zahlen 2019 Jürgen Jost
+ Investigation of a new kind of numbers 2012 Ananta Kumar Bora
+ PDF Chat On searching for solutions of the Diophantine equation $x^3 + y^3 +2z^3 = n$ 2000 Kenji Koyama
+ PDF Chat Quadratic Residuacity: Intro to Advance Number Theory 2022 Maher Ali Rusho
+ A sort of The Diophantine Equation a~b+c~d=e~f(a,b,c,d,e,f∈{n,n+1,n+2,n ∈ N}) 2006 Zewen Zhou
+ PDF Chat Diophantine equations with Appell sequences 2014 András Bazsó
István Pink
+ On the Diophantine equation<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mi>x</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>b</mml:mi><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>+</mml:mo><mml:mi>c</… 2012 S. Barry Cooper
Heung Yeung Lam
+ Arithmetik 2023 Gernot Stroth
Rebecca Waldecker