A class of multiparameter oscillatory singular integral operators: endpoint Hardy space bounds

Type: Article

Publication Date: 2019-10-21

Citations: 0

DOI: https://doi.org/10.4171/rmi/1144

Abstract

We establish endpoint bounds on a Hardy space H^1 for a natural class of multiparameter singular integral operators which do not decay away from the support of rectangular atoms. Hence the usual argument via a Journé-type covering lemma to deduce bounds on product H^1 is not valid. We consider the class of multiparameter oscillatory singular integral operators given by convolution with the classical multiple Hilbert transform kernel modulated by a general polynomial oscillation. Various characterisations are known which give L^2 (or more generally L^p , 1 < p < \infty ) bounds. Here we initiate an investigation of endpoint bounds on the rectangular Hardy space H^1 in two dimensions; we give a characterisation when bounds hold which are uniform over a given subspace of polynomials and somewhat surprisingly, we discover that the Hardy space and L^p theories for these operators are very different.

Locations

  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF
  • Edinburgh Research Explorer (University of Edinburgh) - View - PDF

Similar Works

Action Title Year Authors
+ A Class of Multiparameter Oscillatory Singular Integral Operators: Endpoint Hardy Space Bounds 2018 Odysseas Bakas
Eric Latorre‐Crespo
Diana Cristina Rincón Martínez
James Wright
+ A Class of Multiparameter Oscillatory Singular Integral Operators: Endpoint Hardy Space Bounds 2018 Odysseas Bakas
Eric Latorre‐Crespo
Diana Cristina Rincón Martínez
James Wright
+ A class of multi-parameter Fourier integral operators: endpoint Hardy space bounds 2024 Jinhua Cheng
+ Multi-Parameter Hardy Spaces Theory and Endpoint Estimates for Multi-Parameter Singular Integrals 2023 Guozhen Lu
Jiawei Shen
Lu Zhang
+ Sharp bounds for oscillatory singular integrals on Hardy spaces 2017 Hussain Al-Qassem
Leslie Cheng
Yibiao Pan
+ Hardy Space Theory And Endpoint Estimates For Multi-Parameter Singular Radon Transforms 2018 Jiawei Shen
+ Weighted $L^p$-norm inequality of multi-parameter fractional integration 2023 Chuhan Sun
Zipeng Wang
+ Multi-parameter singular Radon transforms II: the L^p theory 2010 Elias M. Stein
Brian Street
+ NORM ESTIMATES ON HARDY SPACES AND MULTIPLE SINGULAR INTEGRALS 1998 Yong-Kum Cho
+ Non-convolution type oscillatory singular integral on Hardy space HKp(Rn) 1997 Chen Wengu
Yang Dachun
+ Multi-parameter singular Radon transforms II: the L^p theory 2011 Elias M. Stein
Brian Street
+ Weighted Endpoint Estimates for Singular Integral Operators Associated with Zygmund Dilations 2018 Yongsheng Han
Ji Li
Chin-Cheng Lin
Chaoqiang Tan
Xinfeng Wu
+ Multi-parameter singular Radon transforms I: the $L^2$ theory 2010 Brian Street
+ Boundedness of Singular Integrals on Multiparameter Weighted Hardy Spaces $\text{{\textit{H}}}^\text{{\textit{p}}}_{\text{{\textit{w}}}}\ (\mathbb{R}^{\text{{\textit{n}}}}\times \mathbb{R}^{\text{{\textit{m}}}})$ 2011 Yong Ding
Yongsheng Han
Guozhen Lu
Xinfeng Wu
+ Multiparameter singular integrals on the Heisenberg group: uniform estimates 2020 Marco Vitturi
James Wright
+ PDF Chat Weighted Estimates for Oscillatory Singular Integrals 2013 Hussain Al-Qassem
Leslie Cheng
A. Fukui
Yibiao Pan
+ PDF Chat Logarithmic Bounds for Oscillatory Singular Integrals on Hardy Spaces 2016 Hussain Al-Qassem
Leslie Cheng
Yibiao Pan
+ PDF Chat SHARP Lp DECAY ESTIMATES FOR DEGENERATE AND SINGULAR OSCILLATORY INTEGRAL OPERATORS: HOMOGENEOUS POLYNOMIAL PHASES 2024 Shaozhen Xu
+ Regularity of multi-parameter Fourier integral operator 2020 Zipeng Wang
+ Oscillatory singular integral operators with Hölder class kernels on Hardy spaces 2018 Yibiao Pan

Works That Cite This (0)

Action Title Year Authors