Gorenstein categories, singular equivalences and finite generation of cohomology rings in recollements

Type: Article

Publication Date: 2014-11-06

Citations: 51

DOI: https://doi.org/10.1090/s2330-0000-2014-00004-6

Abstract

Given an artin algebra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with an idempotent element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding="application/x-tex">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> we compare the algebras <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a normal upper Lamda a"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>a</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a\Lambda a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with respect to Gorensteinness, singularity categories and the finite generation condition <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif Fg"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext mathvariant="sans-serif">Fg</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {\textsf {Fg}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for the Hochschild cohomology. In particular, we identify assumptions on the idempotent element <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding="application/x-tex">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> which ensure that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Gorenstein if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a normal upper Lamda a"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>a</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a\Lambda a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is Gorenstein, that the singularity categories of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a normal upper Lamda a"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>a</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a\Lambda a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are equivalent and that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif Fg"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext mathvariant="sans-serif">Fg</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {\textsf {Fg}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> holds for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="normal upper Lamda"> <mml:semantics> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:annotation encoding="application/x-tex">\Lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="sans-serif Fg"> <mml:semantics> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext mathvariant="sans-serif">Fg</mml:mtext> </mml:mrow> </mml:mrow> <mml:annotation encoding="application/x-tex">\mathrm {\textsf {Fg}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> holds for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="a normal upper Lamda a"> <mml:semantics> <mml:mrow> <mml:mi>a</mml:mi> <mml:mi mathvariant="normal">Λ<!-- Λ --></mml:mi> <mml:mi>a</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">a\Lambda a</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We approach the problem by using recollements of abelian categories and we prove the results concerning Gorensteinness and singularity categories in this general setting. The results are applied to stable categories of Cohen–Macaulay modules and classes of triangular matrix algebras and quotients of path algebras.

Locations

  • Transactions of the American Mathematical Society Series B - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat 𝐺-spaces with prescribed equivariant cohomology 1983 Georgia Triantafillou
+ PDF Chat Contravariantly finite subcategories and irreducible maps 1993 Jon Carlson
Dieter Happel
+ PDF Chat A note on preprojective partitions over hereditary Artin algebras 1982 Gordana Todorov
+ Gorenstein derived functors 2004 Henrik Holm
+ Homological degrees of representations of categories with shift functors 2016 Liping Li
+ Class groups of Kummer extensions via cup products in Galois cohomology 2018 Karl Schaefer
Eric Stubley
+ Gorenstein injective modules and local cohomology 2004 Reza Sazeedeh
+ Ulrich ideals and almost Gorenstein rings 2015 Shirō Gotō
Ryo Takahashi
Naoki Taniguchi
+ Rings of coinvariants and 𝑝-subgroups 2010 Tzu-Chun Lin
+ Skew categories, smash product categories and quasi-Koszul categories 2011 Deke Zhao
+ Ideals defining Gorenstein rings are (almost) never products 2007 Craig Huneke
+ Maximal families of Gorenstein algebras 2006 Jan O. Kleppe
+ Automorphisms of categories of free algebras of varieties 2002 G. Mashevitzky
B. Plotkin
Eugene Plotkin
+ PDF Chat Graded rings and Krull orders 1989 Eric Jespers
P. Wauters
+ A note on singular equivalences and idempotents 2021 Dawei Shen
+ On stable equivalences induced by exact functors 2005 Yuming Liu
+ PDF Chat Homological theory of idempotent ideals 1992 Maurice Auslander
Marı́a Inés Platzeck
Gordana Todorov
+ PDF Chat The singular cohomology of the inverse limit of a Postnikov tower is representable 1986 Jerzy Dydak
Ross Geoghegan
+ PDF Chat Basic constructions in the 𝐾-theory of homotopy ring spaces 1994 R. Schwänzl
R. M. Vogt
+ PDF Chat Finite generation of Tate cohomology 2011 Jon Carlson
Sunil K. Chebolu
Ján Mináč