Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$ ,

Type: Article

Publication Date: 2014-01-01

Citations: 89

DOI: https://doi.org/10.24033/asens.2223

Abstract

We present a higher dimensional, scale-invariant version of a classical theorem of F. and M. Riesz [RR].More precisely, we establish scale invariant absolute continuity of harmonic measure with respect to surface measure, along with higher integrability of the Poisson kernel, for a domain Ω ⊂ R n+1 , n ≥ 2, with a uniformly rectifiable boundary, which satisfies the Harnack Chain condition plus an interior (but not exterior) corkscrew condition.In a companion paper to this one [HMU], we also establish a converse, in which we deduce uniform rectifiability of the boundary, assuming scale invariant L q bounds, with q > 1, on the Poisson kernel.Résumé.On présente une version invariante par échelles et en dimension supérieure à 3 d'un théorème classique de F. et M. Riesz [RR].Plus précisément, on établit l'absolue continuité de la mesure harmonique par rapport à la mesure de surface, ainsi qu'un gain d'intégrabilité pour le noyau de Poisson, pour un domaine Ω ⊂ R n+1 , n ≥ 2, à bord uniformément rectifiable, vérifiant une condition de chaîne de Harnack et une condition de type "points d'ancrage" ou "corkscrew" intérieure (mais pas extérieure).L'article associé [HMU] établit une réciproque, c'est-à-dire l'uniforme rectifiabilité du bord en supposant des estimées invariantes par échelle L q pour q > 1 sur le noyau de Poisson.

Locations

  • Annales Scientifiques de l École Normale Supérieure - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$ 2012 Steve Hofmann
José María Martell
+ Uniform rectifiability and harmonic measure I: Uniform rectifiability implies Poisson kernels in $L^p$ 2012 Steve Hofmann
José María Martell
+ PDF Chat Uniform rectifiability and harmonic measure, II: Poisson kernels in Lp imply uniform rectifiability 2014 Steve Hofmann
José María Martell
Ignacio Uriarte-Tuero
+ Uniform Rectifiability and harmonic measure IV: Ahlfors regularity plus Poisson kernels in $L^p$ implies uniform rectifiability 2015 Steve Hofmann
José María Martell
+ PDF Chat Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions 2016 Steve Hofmann
José María Martell
Svitlana Mayboroda
+ Poincar\'e Inequalities and Uniform Rectifiability 2019 Jonas Azzam
+ A square function involving the center of mass and rectifiability 2019 Michele Villa
+ PDF Chat Uniform Rectifiability and Harmonic Measure III: Riesz Transform Bounds Imply Uniform Rectifiability of Boundaries of 1-sided NTA Domains 2013 Steve Hofmann
José María Martell
Svitlana Mayboroda
+ PDF Chat Absolute Continuity of the Harmonic Measure on Low Dimensional Rectifiable Sets 2022 Joseph Feneuil
+ PDF Chat Poincaré inequalities and uniform rectifiability 2021 Jonas Azzam
+ Poincaré Inequalities and Uniform Rectifiability 2019 Jonas Azzam
+ PDF Chat Uniform rectifiability and ε-approximability of harmonic functions in L p 2021 Steve Hofmann
Olli Tapiola
+ PDF Chat Multiscale analysis of 1-rectifiable measures: necessary conditions 2014 Matthew Badger
Raanan Schul
+ $\varepsilon$-Approximability of Harmonic Functions in $L^p$ Implies Uniform Rectifiability 2018 Simon Bortz
Olli Tapiola
+ $\varepsilon$-Approximability of Harmonic Functions in $L^p$ Implies Uniform Rectifiability 2018 Simon Bortz
Olli Tapiola
+ $\varepsilon $-approximability of harmonic functions in $L^p$ implies uniform rectifiability 2018 Simon Bortz
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2021 Steve Hofmann
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Uniform rectifiability implies Varopoulos extensions 2020 Steve Hofmann
Olli Tapiola
+ Variation for the Riesz transform and uniform rectifiability 2011 Albert Mas Blesa
Xavier Tolsa